Neocognitron - rugbyprof/5443-Data-Mining GitHub Wiki

Neocognitron

The neocognitron is a hierarchical, multilayered artificial neural network proposed by Kunihiko Fukushima in the 1980s. It has been used for handwritten character recognition and other pattern recognition tasks, and served as the inspiration for convolutional neural networks

Suggested by the structure of the visual nervous system, a new algorithm is proposed for pattern recognition. This algorithm can be realized with a multilayered network consisting of neuron-like cells. The network, “neocognitron”, is self-organized by unsupervised learning, and acquires the ability to recognize stimulus patterns according to the differences in their shapes: Any patterns which we human beings judge to be alike are also judged to be of the same category by the neocognitron. The neocognitron recognizes stimulus patterns correctly without being affected by shifts in position or even by considerable distortions in shape of the stimulus patterns.

Reference: http://www.sciencedirect.com/science/article/pii/0031320382900243