Produce awesome plots using ggplot2 - rochevin/formation_ggplot2 GitHub Wiki
p_raster <- iris.tbl %>% ggplot(aes(y=Part,x=Individual,fill=obs)) + geom_raster() + facet_wrap(~Metric) + scale_fill_viridis_c()
p_raster
pos_end_species <- iris.tbl %>% group_by(Species) %>% arrange(Individual) %>% slice(1)
p_raster + scale_x_continuous(breaks = pos_end_species$Individual,labels = pos_end_species$Species)
p_raster_2 <- iris.tbl %>%
unite(Feature,Part,Metric)%>% #Remerge into one column
group_by(Species) %>% mutate(Ind_spe = 1:dplyr::n()) %>% # Create Ind label but by species
ggplot(aes(y=Species,x=Ind_spe,fill=obs)) + geom_raster() + facet_wrap(~Feature,scales="free_x") + scale_fill_viridis_c()
p_raster_2
iris.tbl %>% ggplot(aes(x=obs,y=..density..,col=Species)) + geom_histogram(bins=50) + geom_density() + facet_wrap(Part~Metric)
By calling within a geom_*
:
p1_bar <- iris.tbl %>% unite(Feature,Part,Metric) %>% ggplot(aes(x=Species,y=obs,fill=Feature)) +
geom_bar(col="black",position="dodge",stat = "summary", fun = "mean")+ scale_fill_viridis_d(option="plasma") +
coord_cartesian(expand = F)
p1_bar
Or by using it directly:
p2_bar <- iris.tbl %>% unite(Feature,Part,Metric) %>% ggplot(aes(x=Species,y=obs,fill=Feature)) +
stat_summary(geom = "bar",position = "dodge",fun.y = "mean",col="black") + scale_fill_viridis_d(option="plasma") +
coord_cartesian(expand = F)
## Warning: `fun.y` is deprecated. Use `fun` instead.
p2_bar
You can also do it before plotting using stat="identity"
p3_bar <- iris.tbl %>% unite(Feature,Part,Metric) %>% group_by(Species,Feature) %>% summarise(mean=mean(obs)) %>%
ggplot(aes(x=Species,y=mean,fill=Feature)) + geom_bar(col="black",stat="identity",position="dodge") + scale_fill_viridis_d(option="plasma")
## `summarise()` has grouped output by 'Species'. You can override using the
## `.groups` argument.
p3_bar
You can also add standard deviation:
p4_bar <- iris.tbl %>% unite(Feature,Part,Metric) %>% ggplot(aes(x=Species,y=obs,fill=Feature)) +
stat_summary(geom = "bar",position = "dodge",fun = "mean",col="black") + scale_fill_viridis_d(option="plasma") +
stat_summary(fun.data=mean_sdl,geom = "errorbar",position="dodge") +
coord_cartesian(expand = F)
p4_bar
iris %>% ggplot(aes(x=Petal.Length,y=Petal.Width)) + geom_point()
iris %>% ggplot(aes(x=Petal.Length,y=Petal.Width)) + geom_point(aes(col=Species))
iris %>% ggplot(aes(x=Petal.Length,y=Petal.Width)) +
geom_point(stat = "summary",fun = "mean",col="black",size = 4) +
stat_summary(fun.data=mean_sdl,geom = "errorbar") +
geom_point(aes(col=Species))
iris %>% ggplot(aes(x=Petal.Length,y=Petal.Width)) +
geom_point(stat = "summary",fun = "mean",col="black",size = 4) +
stat_summary(fun.data=mean_sdl,geom = "errorbar") +
geom_line(stat = "summary",fun = "mean",col="black") +
geom_point(aes(col=Species))
If you have continous value, you can plot a line with geom_line
and
plotting the standard deviation using geom_ribbon
iris %>% ggplot(aes(x=Petal.Length,y=Petal.Width)) +
stat_summary(fun.data=mean_sdl,geom = "ribbon",alpha=0.4) +
geom_line(stat = "summary",fun = "mean",col="black") +
geom_point(aes(col=Species))
iris %>% ggplot(aes(x=Petal.Length,y=Petal.Width)) +
geom_point()+
geom_smooth(method = "lm")
## `geom_smooth()` using formula 'y ~ x'
iris %>% ggplot(aes(x=Petal.Length,y=Petal.Width)) +
geom_point()+
geom_smooth(method = "loess")
## `geom_smooth()` using formula 'y ~ x'
iris %>% ggplot(aes(x=Petal.Length,y=Petal.Width)) +
geom_point()+
geom_smooth(method = "lm",formula = y ~ log(x))
iris %>% ggplot(aes(x=Petal.Length,y=Petal.Width,col=Species)) +
geom_point()+
geom_smooth(method = "lm")
## `geom_smooth()` using formula 'y ~ x'
iris %>% ggplot(aes(x=Petal.Length,y=Petal.Width)) +
geom_point(aes(col=Species))+
geom_smooth(method = "lm")
## `geom_smooth()` using formula 'y ~ x'
pca.iris <- prcomp(dplyr::select(iris,-Species),scale=TRUE,center=TRUE)
percent_var_explained <- tibble(
PC=1:ncol(pca.iris$x),
percent_Var=(pca.iris$sdev^2 / sum(pca.iris$sdev^2)),
cumsum_Var = cumsum(percent_Var)
)
pca.p1 <- percent_var_explained %>%
ggplot(aes(x=PC,y=percent_Var)) +
geom_bar(stat="identity") +
geom_line(aes(y=cumsum_Var),group=1) +
geom_point(aes(y=cumsum_Var),col="red") +
ggrepel::geom_label_repel(aes(y=cumsum_Var,label = scales::percent(cumsum_Var)),direction="y") +
labs(
x = "**Principal Component** <br>(PC)",
y = "**Contribution** <br>(Variance explained in %)"
) +
scale_y_continuous(labels = scales::percent) +
theme(
axis.title.x = ggtext::element_markdown(),
axis.title.y = ggtext::element_markdown()
)
pca.p1
pca.iris.tibble <- bind_cols(
iris %>% dplyr::select(Species),
pca.iris$x %>% setNames(glue::glue("PC{1:4}"))
)
pca.p2 <- pca.iris.tibble %>% ggplot(aes(x=PC1,y=PC2,fill=Species,label=Species)) +
geom_point() + ggforce::geom_mark_hull()
pca.p2
require(patchwork)
## Le chargement a nΓ©cessitΓ© le package : patchwork
pca.p1 + pca.p2 + plot_layout(width=c(0.4,0.6))
iris.tbl %>%
ggplot(aes(x = Species, y = obs,col=Species,fill = after_scale(colorspace::lighten(color, .5)))) +
ggdist::stat_halfeye(
adjust = .5,
width = .6,
.width = 0,
justification = -.2,
point_colour = NA
) +
geom_boxplot(
width = .15,
outlier.shape = NA
) +
## add justified jitter from the {gghalves} package
gghalves::geom_half_point(
## draw jitter on the left
side = "l",
## control range of jitter
range_scale = .4,
## add some transparency
alpha = .3
) + facet_grid(Part~Metric)
iris_ratio <- iris %>%
mutate(Ind = 1:dplyr::n()) %>%
gather(key="Feature",value ="value",-Species,-Ind) %>%
separate(Feature,into = c("Feature","Measure"),sep = "\\.") %>%
spread(key = Measure,value=value) %>% mutate(ratio = log2(Length/Width)) %>%
group_by(Species,Feature) %>%
mutate(
n = dplyr::n(),
median = median(ratio),
max = max(ratio)
) %>%
ungroup() %>%
mutate(species_num = as.numeric(Species))
p_stat <- iris_ratio %>%
ggplot(aes(y=Species,x=ratio,color=Species)) +
stat_summary(
geom = "linerange",
fun.min = function(x) -Inf,
fun.max = function(x) median(x, na.rm = TRUE),
linetype = "dotted",
orientation = "y",
size = .7
) +
geom_point(
aes(y = species_num - .12),
shape = "|",
size = 2,
alpha = .33
) +
ggridges::geom_density_ridges(aes(fill = Species),scale=0.9,alpha=0.7) +
ggdist::stat_pointinterval(
aes(
y = species_num,
color = Species,
fill = after_scale(colorspace::lighten(color, .5))
),
shape = 18,
point_size = 3,
interval_size = 1.8,
adjust = .5,
.width = c(0, 1)
) +
geom_text(
aes(x = median, label = format(round(median, 2), nsmall = 2)),
stat = "unique",
color = "white",
family = "Open Sans",
fontface = "bold",
size = 3.4,
nudge_y = .15
) +
geom_label(
aes(x = max, label = glue::glue("n = {n}")),
stat = "unique",
family = "Open Sans",
fontface = "bold",
size = 3.5,
hjust = 0,
nudge_x = .05,
nudge_y = .02
) +
facet_wrap(~Feature) +
coord_cartesian(clip="off")
p_stat
## Picking joint bandwidth of 0.116
## Picking joint bandwidth of 0.0502
dataset <- "DE_result_edgeR_1_0.05_CvsC_OHT_table.tsv"
dataset <- dataset %>% read_tsv()
## Rows: 12382 Columns: 9
## ββ Column specification ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
## Delimiter: "\t"
## chr (2): rowname, Gene.name
## dbl (7): logFC, logCPM, LR, PValue, p.adj, FILTER.FC, FILTER.P
##
## βΉ Use `spec()` to retrieve the full column specification for this data.
## βΉ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 12,382 Γ 9
## rowname logFC logCPM LR PValue p.adj FILTER.FC FILTER.P Gene.name
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 ENSG000000β¦ -0.00411 4.65 0.00101 0.975 1.00 0 0 TSPAN6
## 2 ENSG000000β¦ 0.0447 5.30 0.159 0.690 1.00 0 0 DPM1
## 3 ENSG000000β¦ -0.0252 2.78 0.0215 0.883 1.00 0 0 SCYL3
## 4 ENSG000000β¦ -0.0467 4.78 0.0998 0.752 1.00 0 0 C1orf112
## 5 ENSG000000β¦ 0.351 1.22 1.04 0.308 0.939 0 0 CFH
## 6 ENSG000000β¦ -0.0307 5.56 0.0581 0.810 1.00 0 0 FUCA2
## 7 ENSG000000β¦ -0.0262 5.27 0.0509 0.822 1.00 0 0 GCLC
## 8 ENSG000000β¦ 0.0491 5.67 0.188 0.665 1.00 0 0 NFYA
## 9 ENSG000000β¦ -0.254 2.78 2.23 0.135 0.736 0 0 STPG1
## 10 ENSG000000β¦ -0.178 5.05 1.89 0.169 0.794 0 0 NIPAL3
## # β¦ with 12,372 more rows
-
rowname
: gene ID (Ensembl). -
logFC
: log2 ratio between expression of the treatment and the control condition. -
logCPM
: average expression for this gene. -
p.adj
: is the logFC significant ? -
Gene.name
: Name of the gene.
dataset %>% ggplot(aes(x=logFC,y=-log10(p.adj))) +
geom_point() +
coord_cartesian(xlim=c(-2,2)) +
geom_hline(yintercept = -log10(0.05),linetype="dashed") +
geom_vline(xintercept = c(-1,1),linetype="dashed")
dataset <- dataset %>% mutate(Type = case_when(
p.adj< 0.05 & logFC > 1 ~ "Upregulated",
p.adj< 0.05 & logFC < -1 ~ "Downregulated",
TRUE ~ "None"
))
dataset %>% count(Type)
## # A tibble: 3 Γ 2
## Type n
## <chr> <int>
## 1 Downregulated 12
## 2 None 12314
## 3 Upregulated 56
dataset %>% ggplot(aes(x=logFC,y=-log10(p.adj))) +
geom_point(aes(col=Type)) +
coord_cartesian(xlim=c(-2,2)) +
geom_hline(yintercept = -log10(0.05),linetype="dashed") +
geom_vline(xintercept = c(-1,1),linetype="dashed")
require(glue)
## Le chargement a nΓ©cessitΓ© le package : glue
dataset <- dataset %>% group_by(Type) %>% mutate(number_Type = dplyr::n()) %>%
mutate(Type_nb = glue("{Type} ({number_Type})"))
require(ggtext)
## Le chargement a nΓ©cessitΓ© le package : ggtext
dataset <- dataset %>% mutate(color = case_when(
Type == "Upregulated" ~ "#c0392b",
Type == "Downregulated" ~ "#2980b9",
TRUE ~ "#535c68"
)) %>%
mutate(Type_nb = as.factor(glue("<i style='color:{color}'>{Type}</i> ({number_Type})")))
p1 <- dataset %>% ggplot(aes(x=logFC,y=-log10(p.adj))) +
geom_point(aes(col=color)) +
scale_color_identity(labels=levels(dataset$Type_nb),guide="legend") +
geom_hline(yintercept = -log10(0.05),linetype="dashed") +
geom_vline(xintercept = c(-1,1),linetype="dashed") +
theme(legend.text = element_markdown())
p1
Here we need the top 15 of each category
require(ggrepel)
## Le chargement a nΓ©cessitΓ© le package : ggrepel
dataset_label <- dataset %>% filter(Type != "None") %>%
group_by(Type) %>% arrange(desc(abs(logFC))) %>% slice(1:15)
p2 <- p1 + geom_label_repel(data=dataset_label,aes(label=Gene.name,col=color),fill=NA,box.padding = 1,max.overlaps = Inf,show.legend = F)
theme_set(theme_classic(base_size=12,base_family = "Open Sans"))
theme_update(legend.text = element_markdown(),
legend.position ="bottom",
plot.title.position = "plot",
plot.caption.position = "plot",
plot.title = ggtext::element_markdown(),
plot.subtitle = ggtext::element_markdown(),
plot.caption = ggtext::element_markdown(),
legend.title = ggtext::element_markdown(),
axis.title.x = ggtext::element_markdown(),
axis.title.y = ggtext::element_markdown()
)
p2 + labs(
title = "Differential expression analysis after **DNA double-strand break damage induction**",
subtitle = 'from RNA-seq data between two conditions : *OHT* (DSB damage induction) and *untreated*.',
caption = "Data accession **E-MTAB-6318**",
x = "**Fold-Change** after damage induction <br>(Log2)",
y = "**Adjusted P-value** <br>(-log10)",
color = "Fold-change <br>(categorical)"
)
## Warning: Removed 1 rows containing missing values (geom_label_repel).