trading_bot - raghavkhandelwal12/Artificial-Intelligence GitHub Wiki
Trading Bot Project Plan (Detailed Explanation)
MVP Features (Minimum Viable Product):
- Basic Trade Recommendations: Get buy/sell signals based on historical and real-time data.
- Real-Time Data Fetch & Execution: Fetch live market data and execute trades automatically.
- Simple Profit/Loss Dashboard: Track trades, profit/loss, and visualize performance.
- User Login & Authentication: Secure access with registration and login functionality.
Day 1: Project Setup & Environment Configuration
-
Install Libraries:
pip install llama-index langchain fastapi yfinance scikit-learn matplotlib pandas numpy httpx- For API testing:
pip install httpx
-
Learning Resource: [FastAPI Docs](https://fastapi.tiangolo.com/)
-
Folder Structure:
/trading-bot/data/models/apimain.pyrequirements.txt
-
Key Functions:
load_env(): Load API keyscreate_folder_structure(): Organize project files
Day 2: Understanding LLaMA and LangChain
-
LLaMA Model: Use
LLaMA-7B(free on [Hugging Face](https://huggingface.co)) -
LangChain components:
LLMChain,PromptTemplate,VectorStores
-
Learning Resource: [LangChain Docs](https://python.langchain.com/)
-
Class to Create:
ModelManager- Handles model loading, prompt generation, and embedding management
Day 3: Data Collection (Historical Stock Data)
-
Library:
yfinance -
Methods:
download(),Ticker,history() -
Class:
StockDataCollector- Fetches historical and real-time stock data
-
Learning Resource: [Yahoo Finance API](https://pypi.org/project/yfinance/)
Day 4: Data Preprocessing
-
Libraries:
pandas,numpy,scikit-learn -
Methods:
fillna(),normalize(),train_test_split() -
Class:
DataPreprocessor -
Learning Resource: [Pandas Docs](https://pandas.pydata.org/docs/)
Day 5: Training Dataset Preparation
-
Prepare features and labels:
- Moving Averages, RSI, Bollinger Bands
- Price movements as labels
-
Function:
generate_training_data() -
Learning Resource: [Scikit-learn User Guide](https://scikit-learn.org/stable/user_guide.html)
Day 6: LLaMA Model Setup
-
Download and load LLaMA model:
- Use
transformersandAutoModel
- Use
-
Class:
LLamaTrainerload_model(),tokenize()
-
Learning Resource: [Transformers Docs](https://huggingface.co/docs/transformers)
Day 7: Fine-Tuning LLaMA on Market Data
-
Library:
transformers -
Methods:
Trainer,TrainingArguments -
Function:
fine_tune_llama() -
Learning Resource: [Hugging Face Course](https://huggingface.co/course)
Day 8: Testing Model Predictions
- Split data for testing
- Class:
PredictionEvaluatorevaluate_predictions()
Day 9: LangChain Integration
- LangChain components:
LLMChain,Memory - Class:
TradeAdvisorgenerate_trade_recommendation()
Day 10: Real-Time Market Data Fetching
-
API:
Alpaca,Binance,yfinance -
Class:
MarketDataFetcherget_realtime_data()
-
Learning Resource: [Alpaca API](https://alpaca.markets/docs/api-references/)
Day 11: Trade Execution Logic
-
Library:
ccxt -
Class:
TradeExecutorbuy(),sell(),check_balance()
-
Learning Resource: [CCXT Docs](https://docs.ccxt.com/en/latest/)
Day 12: User Authentication & Registration
- Library:
FastAPI,bcrypt - Class:
UserManagerregister_user(),login_user()
Day 13: Building the API (FastAPI)
- Endpoints:
/register,/login,/predict,/trade - Class:
TradingAPIrun_server()
Day 14: Backtesting with Historical Data
-
Library:
backtrader -
Class:
Backtesterrun_backtest()
-
Learning Resource: [Backtrader Docs](https://www.backtrader.com/docu/)
Day 15: Error Handling & Logging
- Library:
logging - Methods:
log_error(),log_trade() - Class:
Logger
Day 16: MVP Features & Final Testing
-
MVP Features:
- Basic trade recommendations
- Real-time data fetch and execution
- Simple profit/loss dashboard
- User login & authentication
-
Deploy with:
Docker,Railway.app -
Method:
containerize_project() -
Test all functionalities together
Let me know if you want me to refine anything or add more resources! 🚀