trading_bot - raghavkhandelwal12/Artificial-Intelligence GitHub Wiki

Trading Bot Project Plan (Detailed Explanation)

MVP Features (Minimum Viable Product):

  • Basic Trade Recommendations: Get buy/sell signals based on historical and real-time data.
  • Real-Time Data Fetch & Execution: Fetch live market data and execute trades automatically.
  • Simple Profit/Loss Dashboard: Track trades, profit/loss, and visualize performance.
  • User Login & Authentication: Secure access with registration and login functionality.

Day 1: Project Setup & Environment Configuration

  • Install Libraries:

    • pip install llama-index langchain fastapi yfinance scikit-learn matplotlib pandas numpy httpx
    • For API testing: pip install httpx
  • Learning Resource: [FastAPI Docs](https://fastapi.tiangolo.com/)

  • Folder Structure:

    • /trading-bot
      • /data
      • /models
      • /api
      • main.py
      • requirements.txt
  • Key Functions:

    • load_env(): Load API keys
    • create_folder_structure(): Organize project files

Day 2: Understanding LLaMA and LangChain

Day 3: Data Collection (Historical Stock Data)

Day 4: Data Preprocessing

Day 5: Training Dataset Preparation

Day 6: LLaMA Model Setup

Day 7: Fine-Tuning LLaMA on Market Data

Day 8: Testing Model Predictions

  • Split data for testing
  • Class: PredictionEvaluator
    • evaluate_predictions()

Day 9: LangChain Integration

  • LangChain components: LLMChain, Memory
  • Class: TradeAdvisor
    • generate_trade_recommendation()

Day 10: Real-Time Market Data Fetching

Day 11: Trade Execution Logic

Day 12: User Authentication & Registration

  • Library: FastAPI, bcrypt
  • Class: UserManager
    • register_user(), login_user()

Day 13: Building the API (FastAPI)

  • Endpoints: /register, /login, /predict, /trade
  • Class: TradingAPI
    • run_server()

Day 14: Backtesting with Historical Data

Day 15: Error Handling & Logging

  • Library: logging
  • Methods: log_error(), log_trade()
  • Class: Logger

Day 16: MVP Features & Final Testing

  • MVP Features:

    • Basic trade recommendations
    • Real-time data fetch and execution
    • Simple profit/loss dashboard
    • User login & authentication
  • Deploy with: Docker, Railway.app

  • Method: containerize_project()

  • Test all functionalities together

Let me know if you want me to refine anything or add more resources! 🚀