Business - raghavkhandelwal12/Artificial-Intelligence GitHub Wiki
AI-Powered Monthly Report Generation
Project Overview
This project utilizes AI to automate Monthly Report Generation in Excel format. Using an open-source AI model as an alternative to LLaMA 3.1-8B, it extracts key insights from data, generates structured reports, and formats them efficiently.
Features
- Automated Data Analysis: Extracts insights from raw data.
- Excel Report Generation: Creates structured, formatted reports.
- Customizable Report Templates: Users can modify layouts as needed.
- Open-Source AI Model: Free and efficient alternative to LLaMA 3.1-8B.
Alternative to LLaMA 3.1-8B
Since LLaMA 3.1-8B is not fully open-source, we will use:
- Mistral-7B → [Hugging Face Model](https://huggingface.co/mistralai/Mistral-7B)
- Falcon-7B → [Hugging Face Model](https://huggingface.co/tiiuae/falcon-7b)
Both models are optimized for text-based analysis and available for free.
Python Version
- Python 3.10+ (Recommended for AI and data processing libraries)
Dependencies
Install all required libraries with:
pip install pandas openpyxl torch transformers datasets
Save dependencies in a file:
pip freeze > requirements.txt
Folder Structure
AI_Monthly_Reports/
│── data/
│ ├── raw_data.xlsx # Input raw data files
│ ├── processed_data.xlsx # Cleaned & structured data
│
│── models/
│ ├── mistral_model/ # AI model files
│
│── reports/
│ ├── monthly_report.xlsx # Generated Excel reports
│
│── src/
│ ├── data_processing.py # Data cleaning & preprocessing
│ ├── report_generator.py # Report creation logic
│ ├── model_inference.py # AI model for insights
│
│── main.py # Main script to run the pipeline
│── requirements.txt # Required dependencies
│── README.md # Documentation
Implementation Steps
1. Data Processing (src/data_processing.py)
Cleans raw Excel data:
import pandas as pd
def clean_data(input_file, output_file):
df = pd.read_excel(input_file)
df.dropna(inplace=True) # Remove missing values
df.to_excel(output_file, index=False)
return df
2. Model Inference (src/model_inference.py)
Loads the AI model and extracts key insights:
from transformers import AutoModelForCausalLM, AutoTokenizer
def load_model():
model_name = "mistralai/Mistral-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return model, tokenizer
3. Report Generation (src/report_generator.py)
Generates Excel reports:
import openpyxl
def create_excel_report(data, output_file):
workbook = openpyxl.Workbook()
sheet = workbook.active
sheet.title = "Monthly Report"
for row in data.itertuples(index=False):
sheet.append(row)
workbook.save(output_file)
4. Running the Full Pipeline (main.py)
from src.data_processing import clean_data
from src.report_generator import create_excel_report
data = clean_data("data/raw_data.xlsx", "data/processed_data.xlsx")
create_excel_report(data, "reports/monthly_report.xlsx")
Running the Project
Execute the script:
python main.py
Next Steps
- Enhance AI for Data Insights: NLP-based summarization.
- Improve Report Visualizations: Graphs & charts in Excel.
- Automate Email Report Delivery: Send reports automatically.
With this structured approach, you'll successfully complete and deliver the project to your client with confidence.