bagging&boosting原理 - peter-xbs/CommonCodes GitHub Wiki
GBDT
boosting算法精选资料:
- https://zhuanlan.zhihu.com/p/81182006
- https://zpz.github.io/blog/gradient-boosting-tree-for-binary-classification/
补充: Logistic regression的两种形式
● -yln(p) - (1-y)ln(1-p) # [0, 1]编码
● Sigma(-ln(1/(1+exp(-t*yi)) = Sigma(ln(1+exp(-t*yi)) # [1, -1]编码 t为1/-1
一阶导分别为:
● y - p
● -t/(1+exp(t*yi))
因此在残差计算时,上述两种一阶导数均可使用
参考: https://blog.csdn.net/fjsd155/article/details/88394222
LTR
LTR非常好的资料 源码 + 论文对照阅读
- https://github.com/haowei01/pytorch-examples/blob/master/ranking/LambdaRank.py
- https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-82.pdf
lambdamart: 这个初步预估会比较难
implementation