决策树可视化 - peter-xbs/CommonCodes GitHub Wiki
graphviz
import graphviz
from sklearn import tree
clf = tree.DecisionTreeClassifier(max_depth=4)
clf.fit(X_train, y_train)
dot_data = tree.export_graphviz(clf, xxx)
graph = graphviz.Source(dot_data)
graph
xgboost
import xgboost as xgb
import matplotlib.pyplot as plt
model = xgb.XGBClassifier(xxx)
bst = model.fit(X_train, y_train)
xgb.plot_tree(bst, num_trees=1)
plt.show()
上例可视化第二棵树
dtreeviz
from dtreeviz.trees import dtreeviz # remember to load the package
viz = dtreeviz(clf, X, y,
target_name="target",
feature_names=iris.feature_names,
class_names=list(iris.target_names))
viz
回归树可视化
from dtreeviz.trees import dtreeviz # remember to load the package
viz = dtreeviz(regr, X, y,
target_name="target",
feature_names=boston.feature_names)
viz
REF: