信息抽取文献汇总 - peter-xbs/CommonCodes GitHub Wiki

文章汇总【持续更新】

NER

ACL2022

NAACL2022

  • Improving Entity Disambiguation by Reasoning over a Knowledge Base

  • Hero-Gang Neural Model For Named Entity Recognition

  • On the Use of External Data for Spoken Named Entity Recognition

  • Label Refinement via Contrastive Learning for Distantly-Supervised Named Entity Recognition

  • Delving Deep into Regularity: A Simple but Effective Method for Chinese Named Entity Recognition

  • NER-MQMRC: Formulating Named Entity Recognition as Multi Question Machine Reading Comprehension

AAAI2022:

  • W2NER: Unified Named Entity Recognition as Word-Word Relation Classification. IJCAI2022

  • Position-aware Joint Entity and Relation Extraction with Attention Mechanism

  • Propose-and-Refine: A Two-Stage Set Prediction Network for Nested Named Entity Recognition

  • Automatic Noisy Label Correction for Fine-Grained Entity Typing COLING2022

  • Simple yet Powerful: An Overlooked Architecture for Nested Named Entity Recognition

2021及以前核心论文

  • Negative Sampling for NER: ICLR2021: EMPIRICAL ANALYSIS OF UNLABELED ENTITY PROBLEM IN NAMED ENTITY RECOGNITION【感觉思想很简单,但效果提升较大,同时学习到了一种新的Mask的方案,收益颇多,即计算Loss时,除了用mask想乘的方法,在sampling时,通过position循环提取所需要计算Loss的部分相加再反向传播即可】https://openreview.net/pdf?id=5jRVa89sZk

  • LexiconNER ACL2019: Distantly Supervised Named Entity Recognition using Positive-Unlabeled Learning https://aclanthology.org/P19-1231.pdf; 此处PU Learning的实现还是比较令人费解的,AdaPU 的loss计算 相当于(m-p)pRisk + uRisk,有点类似于weighted Batched MAE loss,不知理解是否有误,如果是这样的话,PU Learning的意义在哪里呢?

    • UPDATE: 读了原始的
  • TemplateBasedNER ACL2021: Template-Based Named Entity Recognition Using BART https://aclanthology.org/2021.findings-acl.161.pdf 此处改造比较简单,BART输入原句,decode解码生成模板,如<candidate_span> is a <entity_type> entity;后续如有需要再看细节 https://github.com/Nealcly/templateNER/blob/main/seq2seq_model.py

历史论文TODO-LIST



Relation

ACL2012

AAAI2022

  • OneRel: OneRel: Joint Entity and Relation Extraction with One Module in One Step. IJCAI2022

  • FastRE: Towards Fast Relation Extraction with Convolutional Encoder and Improved Cascade Binary Tagging Framework

  • Relational Triple Extraction: One Step is Enough



Alignment

ACL2022

NAACL2022

  • Zero-shot Entity Linking with Less Data

  • Dangling-Aware Entity Alignment with Mixed High-Order Proximities

  • ReFinED: An Efficient Zero-shot-capable Approach to End-to-End Entity Linking

  • BLINK with Elasticsearch for Efficient Entity Linking in Business Conversations

ICLR2022

AAAI2022

  • Ensemble Semi-supervised Entity Alignment via Cycle-Teaching.

  • DeepType 2: Superhuman Entity Linking, All You Need Is Type Interactions.

WWW2022

  • Uncertainty-aware Pseudo Label Refinery for Entity Alignment

  • SelfKG: Self-Supervised Entity Alignment in Knowledge Graphs

IJCAI2022

  • Entity Alignment with Reliable Path Reasoning and Relation-aware Heterogeneous Graph Transformer

  • Community Question Answering Entity Linking via Leveraging Auxiliary Data

  • Bridging the Gap between Reality and Ideality of Entity Matching: A Revisting and Benchmark Re-Constrcution

  • Enhancing Entity Representations with Prompt Learning for Biomedical Entity Linking

KDD2022

ICML2022

  • Understanding and Improving Knowledge Graph Embedding for Entity Alignment COLING2022

  • Improving Zero-Shot Entity Linking Candidate Generation with Ultra-Fine Entity Type Information

历史文章收录

EVENT

ACL2022

Information Extraction

ACL2022

  • De-Bias for Generative Extraction in Unified NER Task
  • Text-to-Table: A New Way of Information Extraction