Project Code
resources/citibike_etl_pipeline_py.yml
resources:
jobs:
citibike_etl_pipeline_py:
name: citibike_etl_pipeline_py
tasks:
- task_key: 01_bronze_citibike
spark_python_task:
python_file: ../citibike_etl/scripts/01_bronze/01_bronze_citibike.py
parameters:
- "{{job.id}}"
- "{{job.run_id}}"
- "{{task.run_id}}"
- "{{job.start_time.iso_datetime}}"
- "${var.catalog}"
job_cluster_key: ds3_v2_sn
- task_key: 02_silver_citibike
depends_on:
- task_key: 01_bronze_citibike
spark_python_task:
python_file: ../citibike_etl/scripts/02_silver/02_silver_citibike.py
parameters:
- "{{job.id}}"
- "{{job.run_id}}"
- "{{task.run_id}}"
- "{{job.start_time.iso_datetime}}"
- "${var.catalog}"
job_cluster_key: ds3_v2_sn
- task_key: 03_gold_citibike_daily_ride_summary
depends_on:
- task_key: 02_silver_citibike
spark_python_task:
python_file: ../citibike_etl/scripts/03_gold/03_gold_citibike_daily_ride_summary.py
parameters:
- "${var.catalog}"
job_cluster_key: ds3_v2_sn
- task_key: 03_gold_citibike_daily_station_performance
depends_on:
- task_key: 02_silver_citibike
spark_python_task:
python_file: ../citibike_etl/scripts/03_gold/03_gold_citibike_daily_station_performance.py
parameters:
- "${var.catalog}"
job_cluster_key: ds3_v2_sn
job_clusters:
- job_cluster_key: ds3_v2_sn
new_cluster: "${var.ds3_v2_sn}"
queue:
enabled: true
citibike_etl/scripts/01_bronze/01_bronze_citibike.py
from pyspark.sql.types import StructType, StructField, StringType, DecimalType, TimestampType
from pyspark.sql.functions import create_map, lit
import sys
pipeline_id = sys.argv[1]
run_id = sys.argv[2]
task_id = sys.argv[3]
processed_timestamp = sys.argv[4]
catalog = sys.argv[5]
schema = StructType([
StructField("ride_id", StringType(), True),
StructField("rideable_type", StringType(), True),
StructField("started_at", TimestampType(), True),
StructField("ended_at", TimestampType(), True),
StructField("start_station_name", StringType(), True),
StructField("start_station_id", StringType(), True),
StructField("end_station_name", StringType(), True),
StructField("end_station_id", StringType(), True),
StructField("start_lat", DecimalType(), True),
StructField("start_lng", DecimalType(), True),
StructField("end_lat", DecimalType(), True),
StructField("end_lng", DecimalType(), True),
StructField("member_casual", StringType(), True),
])
df = spark.read.csv(f"/Volumes/{catalog}/00_landing/source_citibike_data/JC-202503-citibike-tripdata.csv", schema=schema, header=True)
df = df.withColumn("metadata",
create_map(
lit("pipeline_id"), lit(pipeline_id),
lit("run_id"), lit(run_id),
lit("task_id"), lit(task_id),
lit("processed_date"), lit(processed_timestamp)
))
df.write.\
mode("overwrite").\
option("overwriteSchema", "true").\
saveAsTable(f"{catalog}.01_bronze.jc_citibike")
citibike_etl/scripts/02_silver/02_silver_citibike.py
import os
import sys
current_dir = os.getcwd()
project_root = os.path.abspath(os.path.join(current_dir, "..", "..", ".."))
sys.path.append(project_root)
from src.citibike.citibike_utils import get_trip_duration_mins
from src.utils.datetime_utils import timestamp_to_date_col
from pyspark.sql.functions import create_map, lit
pipeline_id = sys.argv[1]
run_id = sys.argv[2]
task_id = sys.argv[3]
processed_timestamp = sys.argv[4]
catalog = sys.argv[5]
df = spark.read.table(f"{catalog}.01_bronze.jc_citibike")
df = get_trip_duration_mins(spark, df, "started_at", "ended_at", "trip_duration_mins")
df = timestamp_to_date_col(spark, df, "started_at", "trip_start_date")
df = df.withColumn("metadata",
create_map(
lit("pipeline_id"), lit(pipeline_id),
lit("run_id"), lit(run_id),
lit("task_id"), lit(task_id),
lit("processed_date"), lit(processed_timestamp)
))
df = df.select(
"ride_id",
"trip_start_date",
"started_at",
"ended_at",
"start_station_name",
"end_station_name",
"trip_duration_mins",
"metadata"
)
df.write.\
mode("overwrite").\
option("overwriteSchema", "true").\
saveAsTable(f"{catalog}.02_silver.jc_citibike")
citibike_etl/scripts/03_gold/03_gold_citibike_daily_ride_summary.py
from pyspark.sql.functions import max, min, avg, count, round
import sys
catalog = sys.argv[1]
df = spark.read.table(f"{catalog}.02_silver.jc_citibike")
df = df.groupBy("trip_start_date").agg(
round(max("trip_duration_mins"),2).alias("max_trip_duration_mins"),
round(min("trip_duration_mins"),2).alias("min_trip_duration_mins"),
round(avg("trip_duration_mins"),2).alias("avg_trip_duration_mins"),
count("ride_id").alias("total_trips")
)
df.write.\
mode("overwrite").\
option("overwriteSchema", "true").\
saveAsTable(f"{catalog}.03_gold.daily_ride_summary")
citibike_etl/scripts/03_gold/03_gold_citibike_daily_station_performance.py
from pyspark.sql.functions import avg, count, round
import sys
catalog = sys.argv[1]
df = spark.read.table(f"{catalog}.02_silver.jc_citibike")
df = df.\
groupBy("trip_start_date", "start_station_name").\
agg(
round(avg("trip_duration_mins"),2).alias("avg_trip_duration_mins"),
count("ride_id").alias("total_trips")
)
df.write.\
mode("overwrite").\
option("overwriteSchema", "true").\
saveAsTable(f"{catalog}.03_gold.daily_station_performance")