Regular Variables with Manual Override - pathfinder-analytics-uk/dab_project GitHub Wiki
Commands
Overriding the catalog variable for test deployment
databricks bundle deploy -t test --var="catalog=citibike_test"
Overriding the catalog variable for prod deployment
databricks bundle deploy -t prod --var="catalog=citibike_prod"
Project Code
databricks.yml
# This is a Databricks asset bundle definition for dab_project.
# See https://docs.databricks.com/dev-tools/bundles/index.html for documentation.
bundle:
name: dab_project
include:
- resources/*.yml
variables:
catalog:
default: "citibike_dev"
targets:
dev:
# The default target uses 'mode: development' to create a development copy.
# - Deployed resources get prefixed with '[dev my_user_name]'
# - Any job schedules and triggers are paused by default.
# See also https://docs.databricks.com/dev-tools/bundles/deployment-modes.html.
mode: development
default: true
workspace:
host: https://adb-3167041784358437.17.azuredatabricks.net
test:
mode: production
presets:
name_prefix: '[testing] '
workspace:
host: https://adb-348512119942792.12.azuredatabricks.net/
# We explicitly specify /Workspace/Users/[email protected] to make sure we only have a single copy.
root_path: /Workspace/Shared/.bundle/${bundle.name}/${bundle.target}
permissions:
- user_name: [email protected]
level: CAN_MANAGE
run_as:
user_name: [email protected]
prod:
mode: production
workspace:
host: https://adb-3274436598051014.14.azuredatabricks.net/
# We explicitly specify /Workspace/Users/[email protected] to make sure we only have a single copy.
root_path: /Workspace/Shared/.bundle/${bundle.name}/${bundle.target}
permissions:
- user_name: [email protected]
level: CAN_MANAGE
run_as:
user_name: [email protected]
citibike_etl/notebooks/01_bronze/01_bronze_citibike.ipynb
from pyspark.sql.types import StructType, StructField, StringType, DecimalType, TimestampType
from pyspark.sql.functions import create_map, lit
pipeline_id = dbutils.widgets.get("pipeline_id")
run_id = dbutils.widgets.get("run_id")
task_id = dbutils.widgets.get("task_id")
processed_timestamp = dbutils.widgets.get("processed_timestamp")
catalog = dbutils.widgets.get("catalog")
schema = StructType([
StructField("ride_id", StringType(), True),
StructField("rideable_type", StringType(), True),
StructField("started_at", TimestampType(), True),
StructField("ended_at", TimestampType(), True),
StructField("start_station_name", StringType(), True),
StructField("start_station_id", StringType(), True),
StructField("end_station_name", StringType(), True),
StructField("end_station_id", StringType(), True),
StructField("start_lat", DecimalType(), True),
StructField("start_lng", DecimalType(), True),
StructField("end_lat", DecimalType(), True),
StructField("end_lng", DecimalType(), True),
StructField("member_casual", StringType(), True),
])
df = spark.read.csv(f"/Volumes/{catalog}/00_landing/source_citibike_data/JC-202503-citibike-tripdata.csv", schema=schema, header=True)
df = df.withColumn("metadata",
create_map(
lit("pipeline_id"), lit(pipeline_id),
lit("run_id"), lit(run_id),
lit("task_id"), lit(task_id),
lit("processed_timestamp"), lit(processed_timestamp)
))
df.write.\
mode("overwrite").\
option("overwriteSchema", "true").\
saveAsTable(f"{catalog}.01_bronze.jc_citibike")
citibike_etl/notebooks/02_silver/02_silver_citibike.ipynb
from citibike.citibike_utils import get_trip_duration_mins
from utils.datetime_utils import timestamp_to_date_col
from pyspark.sql.functions import create_map, lit
pipeline_id = dbutils.widgets.get("pipeline_id")
run_id = dbutils.widgets.get("run_id")
task_id = dbutils.widgets.get("task_id")
processed_timestamp = dbutils.widgets.get("processed_timestamp")
catalog = dbutils.widgets.get("catalog")
df = spark.read.table(f"{catalog}.01_bronze.jc_citibike")
df = get_trip_duration_mins(spark, df, "started_at", "ended_at", "trip_duration_mins")
df = timestamp_to_date_col(spark, df, "started_at", "trip_start_date")
df = df.withColumn("metadata",
create_map(
lit("pipeline_id"), lit(pipeline_id),
lit("run_id"), lit(run_id),
lit("task_id"), lit(task_id),
lit("processed_timestamp"), lit(processed_timestamp)
))
df = df.select(
"ride_id",
"trip_start_date",
"started_at",
"ended_at",
"start_station_name",
"end_station_name",
"trip_duration_mins",
"metadata"
)
df.write.\
mode("overwrite").\
option("overwriteSchema", "true").\
saveAsTable(f"{catalog}.02_silver.jc_citibike")
citibike_etl/notebooks/03_gold/03_gold_citibike_daily_ride_summary.ipynb
from pyspark.sql.functions import max, min, avg, count, round
catalog = dbutils.widgets.get("catalog")
df = spark.read.table(f"{catalog}.02_silver.jc_citibike")
df = df.groupBy("trip_start_date").agg(
round(max("trip_duration_mins"),2).alias("max_trip_duration_mins"),
round(min("trip_duration_mins"),2).alias("min_trip_duration_mins"),
round(avg("trip_duration_mins"),2).alias("avg_trip_duration_mins"),
count("ride_id").alias("total_trips")
)
df.write.\
mode("overwrite").\
option("overwriteSchema", "true").\
saveAsTable(f"{catalog}.03_gold.daily_ride_summary")
citibike_etl/notebooks/03_gold/03_gold_citibike_daily_station_performane.ipynb
from pyspark.sql.functions import avg, count, round
catalog = dbutils.widgets.get("catalog")
df = spark.read.table(f"{catalog}.02_silver.jc_citibike")
df = df.\
groupBy("trip_start_date", "start_station_name").\
agg(
round(avg("trip_duration_mins"),2).alias("avg_trip_duration_mins"),
count("ride_id").alias("total_trips")
)
df.write.\
mode("overwrite").\
option("overwriteSchema", "true").\
saveAsTable(f"{catalog}.03_gold.daily_station_performance")