General Execution Workflow - ovokpus/MLOps-Learn GitHub Wiki
port 4200 Udp/tcp for Prefect
Download the needed files from:
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
PreReq
Start MLFLOW
cd ~/github/mlops-zoomcamp/02-experiment-tracking
mlflow ui --backend-store-uri sqlite:///mlflow.db --serve-artifacts --artifacts-destination ./artifacts
Install prefect
pip install prefect==2.0b5
Set dir from previous exercise
ln -s ../02-experiment-tracking/data/
ln -s ../02-experiment-tracking/models/ .
ln -s ../02-experiment-tracking/mlflow.db
ln -s ../02-experiment-tracking/mlruns/ .
Start the server config
cd 03-orchestration/
prefect config set PREFECT_ORION_UI_API_URL="http://localhost:4200/api"
prefect orion start --host 0.0.0.0
On client side
prefect config set PREFECT_API_URL="http://localhost:4200/api"
prefect config view
If PREFECT_API URL config is not set correctly:
prefect config unset PREFECT_API_URL
prefect config set PREFECT_API_URL="http://localhost:4200/api"
prefect config view
prefect storage ls
Set the storage
Select the local storage for the test purpose prefect storage create prefect storage ls
Start a simple flow
python prefect_flow.py
Create the deployment
prefect deployment create prefect_deploy.py
Create the Work queue on the GUI
Start the work queue
prefect work-queue preview ba5b0352-75f6-4e91-8781-e6f093b69f46 prefect agent start ba5b0352-75f6-4e91-8781-e6f093b69f46