Hertz Mindlin - msolids/musen GitHub Wiki


This is soft-sphere model which is used to calculate particle-particle or particle wall contact. In both cases calculations are similar, however, when particle-wall contact is calculated, then particle radius and mass are considered as equivalent radius R^* and mass M^*.

Velocities

\bar{v}_{rel} = \bar{v}_2 - \bar{v}_1 + \bar{\omega}_1 \times \bar{r}_c - \bar{\omega}_2 \times \bar{r}_{c_2}

\bar{v}_{rel,n}=\bar{r}_n\cdot(\bar{r}_n\cdot\bar{v}_{rel})

\bar{v}_{rel,t}=\bar{v}_{rel}-\bar{v}_{rel,n}

Additional parameters

\alpha = \frac{\ln(e)}{\sqrt{\pi^2 + \ln^2(e)}}

R^* = \frac{r_1 \cdot r_2}{r_1 + r_2}

M^* = \frac{m_1 \cdot m_2}{m_1 + m_2}

E^*=\left(\frac{1-\nu^2_1}{E_1}+\frac{1-\nu^2_2}{E_2}\right)^{-1}

Normal force

\xi_n = r_1 + r_2 - |O_2 - O_1|

k_n=2E^*\sqrt{\xi_{n}\cdot R^*}

\bar F_n = - \bar r_n \cdot \frac{2}{3} \cdot \xi_n \cdot k_n -\bar{r}_n \cdot sgn(\bar{v}_{rel,n} \cdot \bar{r}_n) \cdot 1.8257 \cdot \alpha \cdot |\bar{v}_{rel,n}|\cdot \sqrt{k_n \cdot M^*}

Tangential (shear) force

\Delta\bar\xi_t = \bar v_{rel,t} \cdot \Delta t

k_t=8\cdot G^*\cdot\sqrt{R^*\cdot\xi_n}

\Delta \bar{F}_t = k_t \cdot \Delta \bar{\xi}_t

\bar{F}_{t,damp} = - 1.8257 \cdot \alpha \cdot |\bar{v}_{rel,t}|\cdot \sqrt{k_t \cdot M^*}

\bar{F}_{t,pr}^{cor} = \bar{F}_{t,pr}-\bar{r}_n \cdot (\bar{r}_n \cdot \bar{F}_{t,pr} )

\bar{F}_{t,pr}^{cor} = \bar{F}_{t,pr}^{cor} \cdot |\bar F_{t,pr}|\, / \,|\bar F_{t,pr}^{cor} |

\bar F_t = \bar F_{t,pr}^{cor} + \Delta \bar F_t + \bar{F}_{t,damp}

if |\bar F_t| > \mu_{sl}\cdot |\bar F_n |

then \bar F_t = \mu_{sl} \cdot |\bar F_n | \cdot \frac{\bar F_t}{|\bar F_t|}

Rolling friction

\bar M_{ro,1} = -\mu_{ro} \cdot |\bar F_n| \cdot r_1 \cdot \frac{\bar\omega_1}{|\bar\omega_1|}

\bar M_{ro,2} = -\mu_{ro} \cdot |\bar F_n| \cdot r_2 \cdot \frac{\bar\omega_2}{|\bar\omega_2|}

Summarized forces and moments

\bar F_{tot} = \bar F_n + \bar F_t

\bar F_{1} = \bar F_n + \bar F_t

\bar F_{2} = -\bar F_n - \bar F_t

\bar M_{tot,1} = \bar r_n \times \bar F_t \cdot r_1 + \bar M_{ro,1}

\bar M_{tot,2} = -\bar r_n \times \bar F_t \cdot r_2 + \bar M_{ro,2}

Literature

  1. Hertz H. (1882). Über die Berührung fester elastischer Körper. Journal die reine und angewandte Mathematik, 92, 156-171.
  2. Tsuji Y., Tanaka T., Ishida T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in horizontal pipe. Powder Technology, 71 239-250.
Symbol Description
E^* Equivalent Young’s modulus [Pa]
E_1,\,E_2 Young’s moduli of contact partners [Pa]
e Restitution coefficient [-]
\bar F_n,\, \bar F_t Force in normal and tangential directions [N]
\bar F_{t,pr} Tangential force on previous iteration [N]
G^* Equivalent shear modulus [Pa]
M^* Equivalent mass [kg]
\bar M_{ro} Moment due to the rolling friction [N]
m_1,\,m_2 Particle masses [kg]
O_1,\,O_2 Centers of contact partners [m]
R^* Equivalent radius [m]
\bar r_c Contact vector [m]
\bar r_n Normalized contact vector [-]
\bar v_{rel} Relative velocity [m/s]
\bar v_1,\, \bar v_2 Velocities of contact partners [m/s]
r_1,\,r_2 Particle radii [m]
\Delta\bar\xi_t Increment of tangential displacement in the current step [m]
\mu_{ro},\,\mu_{sl} Coefficient of rolling friction and sliding friction [-]
\xi_n Normal overlap [m]
\omega_1,\,\omega_2 Rotation velocities of particles [rad/s]