dataframe - morinim/ultra GitHub Wiki

Structurally, a dataframe is a 2D data structure with columns of potentially different types. You can think of it like a spreadsheet or a SQL table.

Functionally it resembles the pandas object, but:

  1. it supports only a subset of the operations available in Python's Pandas DataFrame. ultra::dataframe covers basic usage scenarios and is not intended as a replacement for tools that provide extensive data preprocessing;
  2. by default, it automatically splits an example into features (input) and label (output). It supports storing unlabeled examples (e.g. for unsupervised learning tasks or for storing examples to be classified);
  3. it is more row-oriented, whereas Pandas DataFrame predominantly column-oriented.

Basic functionality

Import data

User can import data from a CSV file:

std::istringstream dataset(R"(
   A,   B, C,  D
  a0, 0.0, 0, d0
  a1, 0.1, 1, d1
  a2, 0.2, 2, d2)");

dataframe d;
d.read(dataset);

or from a table in memory:

// `raw_data` is basically a table: rows of variant values.
raw_data dataset2 =
{
  { "A", "B", "C",  "D"},
  {"a0", 0.0,   0, "d0"},
  {"a1", 0.1,   1, "d1"},
  {"a2", 0.2,   2, "d2"}
};

dataframe d;
d.read(dataset2);

In both cases, we have:

d.columns[0].name() == "A"
d.columns[1].name() == "B"
d.columns[2].name() == "C"
d.columns[3].name() == "D"

By default, the first column (column 0) is treated as the output column. The user can specify a different column of the CSV / table:

d.read(dataset, dataframe::params().output(2));

In this case, the specified output column is shifted to the first position:

d.columns[0].name() == "C"
d.columns[1].name() == "A"
d.columns[2].name() == "B"
d.columns[3].name() == "D"

Note:

  • for CSV files, the parser sniffs the presence of column headers (if this fails - CSV is a textbook example of how not to design a text-based file format - the user can manually indicate the correct configuration using params::header / params::no_header);
  • for tables in memory read behaves differently and simply assumes the first row contains the headers.

To access label (output value) and features (input values):

std::cout << "Label of the first example is: " << lexical_cast<double>(d.front().output)
          << "\nFeatures are:"
          << "\nA: " << lexical_cast<std::string>(d.front().input[0])
          << "\nB: " << lexical_cast<double>(     d.front().input[1])
          << "\nD: " << lexical_cast<std::string>(d.front().input[2]) << '\n';

For unlabeled examples, use the no_output modifier:

d.read(dataset, dataframe::params().no_output());

In this case:

d.columns[0].name() == ""
d.columns[1].name() == "A"
d.columns[2].name() == "B"
d.columns[3].name() == "C"
d.columns[4].name() == "D"

a surrogate empty output column is added at the beginning and has_value(d.front().output) == false.

Columns

To access information about the columns structure, use the columns member function:

std::cout << "Name of the first column: " << d.columns[0].name()
          << "\nCategory of the first column: " << d.columns[0].domain();

std::cout << "\nThere are " << d.columns.size() << " columns\n";

References

⚠️ **GitHub.com Fallback** ⚠️