3D transformation made of a rotation and a translation.
| UAC | URX | Parameter | Datatype | Description | 
| ✓ | ✓ | translation | vector3d | Translation operation $(d_x, d_y, d_z)$, in [m], in a 3D Cartesian system. Stored as a raw objet.
 | 
| ✓ | ✓ | rotation | vector3d | Rotation operation $(\alpha, \beta, \gamma)$, in [radian], in a 3D Cartesian system, using the right-hand rule. Stored as a raw objet.
 | 
When applying a transform to a coordinate system, the rotation is applied first, then the translation.
Let $(d_x, d_y, d_z)$ be the translation along the axis $x, y, z$. The translation matrix $D$ is:
$$
D(d_x, d_y, d_z) =
\begin{bmatrix}
1 & 0 & 0 & d_x\\
0 & 1 & 0 & d_y\\
0 & 0 & 1 & d_z\\
0 & 0 & 0 & 1
\end{bmatrix}
$$
Let $\alpha, \beta, \gamma$ be the angles of rotation (in radians) around the $x, y, z$ axis respectively. The following figure shows the positive direction of rotation for each axis:

The global rotation $R$ is the composition of the rotation $R_x(\alpha)$ then $R_y(\beta)$ then $R_z(\gamma)$:
$$
{\displaystyle {\begin{aligned}\\
R(\alpha, \beta, \gamma)=R_{z}(\gamma ) \circ R_{y}(\beta ) \circ R_{x}(\alpha )&=
{\begin{bmatrix}
\cos \gamma &-\sin \gamma & 0 & 0\\
\sin \gamma &\cos \gamma & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}}
{\begin{bmatrix}
\cos \beta &0&\sin \beta & 0\\
0 & 1 & 0 & 0\\
-\sin \beta &0&\cos \beta & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}}
{\begin{bmatrix}
1 & 0 & 0 & 0\\
0&\cos \alpha &-\sin \alpha & 0\\
0&\sin \alpha &\cos \alpha & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}}
\&=
{\begin{bmatrix}
\cos \beta \cos \gamma &\sin \alpha \sin \beta \cos \gamma -\cos \alpha \sin \gamma &\cos \alpha \sin \beta \cos \gamma +\sin \alpha \sin \gamma &0\\
\cos \beta \sin \gamma &\sin \alpha \sin \beta \sin \gamma +\cos \alpha \cos \gamma &\cos \alpha \sin \beta \sin \gamma -\sin \alpha \cos \gamma &0\\
-\sin \beta &\sin \alpha \cos \beta &\cos \alpha \cos \beta & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}}
\end{aligned}}}
$$
The transform operation $T$ is defined by:
$$
T = R(\alpha, \beta, \gamma) \circ D(d_x, d_y, d_z) =
\begin{bmatrix}
\cos \beta \cos \gamma &\sin \alpha \sin \beta \cos \gamma -\cos \alpha \sin \gamma &\cos \alpha \sin \beta \cos \gamma +\sin \alpha \sin \gamma & d_x\\
\cos \beta \sin \gamma &\sin \alpha \sin \beta \sin \gamma +\cos \alpha \cos \gamma &\cos \alpha \sin \beta \sin \gamma -\sin \alpha \cos \gamma &d_y\\
-\sin \beta &\sin \alpha \cos \beta &\cos \alpha \cos \beta & d_z\\
0 & 0 & 0 & 1\\
\end{bmatrix}
$$
element
| probe
| receive_setup
| transmit_setup
Rotation matrix - Wikipedia