Lecture 8 R code - mlloyd23/bio211_JAN2018 GitHub Wiki
###REVIEW POST HOC TESTS
#back to the ToothGrowth data
#perform anova: test for effect of dose?
head(ToothGrowth)
ToothGrowth$dose<-as.factor(ToothGrowth$dose)
anova.dose.test<-aov()
summary(anova.dose.test)
boxplot()
#post-hoc tukey
tukey.test<-TukeyHSD()
tukey.test
#And Dunn test for non-normal data using mpg data
kruskal.test()
#required FSA
install.packages("FSA")
library(FSA)
post.hoc.dunn = dunnTest()
post.hoc.dunn
###NOW ONTO CORRELATIONS
phys.data<-read.table("human_phys.txt", header=TRUE)
head(data)
#look for some normal data
hist(phys.data$BR_before)
hist(phys.data$BR_after)
shapiro.test(phys.data$BR_before)
shapiro.test(phys.data$BR_after)
#have a look a the relationship between the two variables
plot()
#test the relationship between the two variables
cor.test()
#same as running the following:
cor.test()
##Correlations with non-normal data
seed.data<-read.table("Seeds.txt", header=TRUE)
hist(seed.data$Distance)
hist(seed.data$Time)
#Are Distance and Time correlated?
plot()
#run Spearmen correlation
cor.test()
#compare to traditional Pearson's correlation
cor.test()
#Linear regression
model<-lm()
summary()
plot()
#add best fit line
int =
slope =
abline()