Lecture 6 R code - mlloyd23/bio211_JAN2018 GitHub Wiki
#Transformations population sampling board data
#Lecture 6
#Before we get started with the sampling data, look at some simulated normal data
#simulated normal data
norm <- rnorm(100)
hist(norm)
norm
shapiro.test(norm)
#qq plots
qqnorm(norm)
qqline(norm)
#install the rcompanion package to use plotNormalHistogram() function
library(devtools)
install.packages("rcompanion")
library(rcompanion)
data<-read.table("sampling.txt", header=TRUE)
head(data)
plotNormalHistogram(data$Value)
#make variables for counts of each color
green<-
pink<-
red<-
blue<-
#Visual tests of normality
plotNormalHistogram()
#qq plots
qqnorm()
qqline()
#Quantitative tests for normality;
shapiro.test()
#Let's try a square root transformation
sqrt<-sqrt()
plotNormalHistogram()
#test for normality
shapiro.test()
#What about a log transformation?
log<-log()
plotNormalHistogram()
shapiro.test()
#Arcsine-square root with proportion data
#simulate some proportional data
prop.data <- seq(-1, 1, length = 20)
plotNormalHistogram()
arcsine<-asin(sqrt(abs(prop.data)))
shapiro.test()
###########################################################
##Using river turbidity data
##########################################################
Input =("
Location Turbidity
a 1.0
a 1.2
a 1.1
a 1.1
a 2.4
a 2.2
a 2.6
a 4.1
a 5.0
a 10.0
b 4.0
b 4.1
b 4.2
b 4.1
b 5.1
b 4.5
b 5.0
b 15.2
b 10.0
b 20.0
c 1.1
c 1.1
c 1.2
c 1.6
c 2.2
c 3.0
c 4.0
c 10.5
")
Data = read.table(textConnection(Input),header=TRUE)
plotNormalHistogram()
#attempt anova on untransformed data
##sqrt transformation
#log
#Tukey’s Ladder of Powers transformation
T_tuk = transformTukey()
#anova on transformed data