4个最流行的机器学习数据集 - lymanzhang/Machine-Learning-for-Design GitHub Wiki

机器学习算法需要作用于数据,而数据的本质则决定了应用的机器学习算法是否合适,而数据的质量也会决定算法表现的好坏程度。所以会研究数据,会分析数据很重要。本文作为学习研究数据系列博文的开篇,列举了4个最流行的机器学习数据集。

Iris

Iris也称鸢[yuān]尾花卉数据集,是一类多重变量分析的数据集。通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。

数据集特征 记录数 领域 属性特征 属性数目 捐赠日期 相关应用 缺失值
多变量 150 生活 实数 4 1988-07-01 分类

Adult

该数据从美国1994年人口普查数据库抽取而来,可以用来预测居民收入是否超过50K$/year。该数据集类变量为年收入是否超过50k$,属性变量包含年龄,工种,学历,职业,人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量。

数据集特征 记录数 领域 属性特征 属性数目 捐赠日期 相关应用 缺失值
多变量 48842 社会 类别型,整数 14 1996-05-01 分类

Wine

这份数据集包含来自3种不同起源的葡萄酒的共178条记录。13个属性是葡萄酒的13种化学成分。通过化学分析可以来推断葡萄酒的起源。值得一提的是所有属性变量都是连续变量。

数据集特征 记录数 领域 属性特征 属性数目 捐赠日期 相关应用 缺失值
多变量 178 物理 整数,实数 13 1991-07-01 分类

Car Evaluation

这是一个关于汽车测评的数据集,类别变量为汽车的测评,(unacc,ACC,good,vgood)分别代表(不可接受,可接受,好,非常好),而6个属性变量分别为「买入价」,「维护费」,「车门数」,「可容纳人数」,「后备箱大小」,「安全性」。值得一提的是6个属性变量全部是有序类别变量,比如「可容纳人数」值可为「2,4,more」,「安全性」值可为「low, med, high」。

数据集特征 记录数 领域 属性特征 属性数目 捐赠日期 相关应用 缺失值
多变量 1728 N/A 类别型 6 1997-06-01 分类

小结

通过比较以上4个数据集的差异,简单地总结:

  • 当需要试验较大量的数据时,我们可以想到「Adult」;
  • 当想研究变量之间的相关性时,我们可以选择变量值只为整数或实数的「Iris」和「Wine」;
  • 当想研究logistic回归时,我们可以选择类变量值只有两种的「Adult」;
  • 当想研究类别变量转换时,我们可以选择属性变量为有序类别的「Car Evaluation」。

更多的尝试还需要对这些数据集了解更多才行。

数据集下载机器学习数据集