Poster - lovelydett/Phononic-eigenvalue-problem GitHub Wiki
Block 1
Background
- Phononic crystal(PhC): Material with periodic Young's modulus E and Density ρ
- Eigenvalue problem of PhC is a highly non-linear input-output mapping problem
- The problem is to get the eigenvalues given a certain material(E,ρ,v) and certain wave numbers(Q1,Q2) by solving the following physical equations
- 公式1
- 公式2
What is CNN(或者其他题目?)
- CNN: Convolutional Neuron Network
- Convolutional layers involved: Kernels capable of capturing highly non-linear features in different hierachies
- Maxpool layers involved: Dimension Reduced without losing important information, processing speeded up, models more robust
- CNN 样例图
Why CNN is used
- Traditional methods: Invloves PDE solving and complicated process
- Trained CNN: An approach based on pure Data-driven architectures, sidesteps cumbersome algorithms to cpature the input-output map F w,b
- 公式3
- CNN can naturally represent tensors in physical problems
- Suitable for pattern recognization, widely applied in image processing
- Input of PhC problem can be interpreted as 5-channel "images"
Block 2
Forward Problem
- Goal: For the PhC problem, construct and train a CNN architecture which gives e, given a certain material M(E,ρ,v) and wave number Q(Q1,Q2)
Input and output data
- Input [128,128,5]: One 128*128 grid domain, one 5-vector on each point in domain representing E,ρ,v,Q1,Q2
- Output [50,1]: One 50-vector for 50 eigenvalues
- One input designates one specific combination of material and wave number.
- One output corresponds to the eigenvalues given one specific M and Q combination.
- All data normed by:
- 标准化公式 (x-x拔)/(xmax-xmin)
CNN architecture
- Input[128,128,5]→Conv2d(Relu)→Maxpool→Conv2d(Relu)→Maxpool→Conv2d(Relu)→Maxpool→Dense(Relu)→Dense(Linear)→Ouput[50,1]
- 放图
Result
- CNN is trained upon datasets with increasing numbers of training and validation data. A series of models acquired and tested by a size=22 test dataset.
- As the number of training data goes on, the MAE performance of prediction in test set is below
- 训练数量 图
Block 3
inverse problem
在inverse problem中,我们致力于通过神经网络来解决Phononics Crystal的eigenvalue problem的逆运算。 原公式为【】,通过正向网络可以得到,y=f(x),现在我们希望通过神经网络训练出一个模型,将原正向的输出,作为现在的输入,原输入作为现在的输出,找到一个对应的映射关系————x=g(y),其中,输入y是一个维度为50的特征值向量,输出x是一个二维平面(128*128)上的每个点的5个物理参数(杨氏模量,泊松系数,以及材料密度)。