HashMap 源码分析 - litter-fish/ReadSource GitHub Wiki

类继承关系

数据结构

HashMap基于拉链式的算法,其数据结构由数组+链表+树组成

构造方法

一些属性

// 默认初始化容量 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
// 默认负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;

// 当前 HashMap 所能容纳键值对数量的最大值,超过这个值,则需扩容
int threshold;
// 负载因子
final float loadFactor;
// transient表示不会被默认的序列化机制序列化。
transient Node<K,V>[] table;

为什么默认初始大小为2<<4(16) 为什么是2的幂?为什么是16,而不是8或32? 第一个问题:获取key再数组中的位置:(n-1)&hash,当初始化大小为2的幂时,(n-1)&hash等价于n%hash,为什么不直接用取余? 与运算(&)比取余运算效率更高,

为何是16:折中,取小了会频繁扩容,取大了浪费空间

默认加载因子为啥是0.75? 加载因子表示哈希表的填满程度,和扩容息息相关,为何不是其他值如0.5或1? 如果是0.5表示哈希表填到一半就会进行扩容,这样导致扩容频繁,空间利用率低。 如果是1表示哈希表填满了才进行扩容,会加大hash冲突。

最后取0.7是为了权衡hash冲突和空间利用率

链表转红黑树的阈值为何是8? 树节点的所占空间时普通节点的两倍大小, 当随机hashcode离散性很好时,树形bin用到的概率很小,因为数据均匀分布在每个bin中,几乎不会有bin中链表长度达到阈值。 但是如果非理想的hashcode情况下,数据离散性会变差,导致数据分布不均匀 不过随机hashcode的所有bin中节点的分布频率遵循柏松分布,当bin中链表长度达到8时概率变成非常小,几乎不可能出现。

树的链表还原阈值为何是6? 防止树和链表进行频繁的转换,

最大容量为何是1<<30? int占4个字节,一个字节8位即32位,

hash表的最小树形化容量为何是64? 容量低于64时,hash碰撞概率比较大,出现长链表的可能性会稍微大些,这种原因产生的长链表优先扩容而不是树化。

构造函数

/**
 * 默认初始化容量:16
 * 默认负载因子:0.75
 */
public HashMap() {
  this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

public HashMap(int initialCapacity) {
  this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

public HashMap(int initialCapacity, float loadFactor) {
  if (initialCapacity < 0)
    throw new IllegalArgumentException("Illegal initial capacity: " +
                                         initialCapacity);
  if (initialCapacity > MAXIMUM_CAPACITY)
    initialCapacity = MAXIMUM_CAPACITY;
  if (loadFactor <= 0 || Float.isNaN(loadFactor))
    throw new IllegalArgumentException("Illegal load factor: " +
                                         loadFactor);
  this.loadFactor = loadFactor;
  this.threshold = tableSizeFor(initialCapacity);
}

public HashMap(Map<? extends K, ? extends V> m) {
  this.loadFactor = DEFAULT_LOAD_FACTOR;
  putMapEntries(m, false);
}

初始阈值的计算

// tableSizeFor的作用就是,如果传入A,当A大于0,小于定义的最大容量时,
// 如果A是2次幂则返回A,否则将A转化为一个比A大且差距最小的2次幂。
// 例如传入7返回8,传入8返回8,传入9返回16
static final int tableSizeFor(int cap) {
  int n = cap - 1;
  n |= n >>> 1;
  n |= n >>> 2;
  n |= n >>> 4;
  n |= n >>> 8;
  n |= n >>> 16;
  return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

cfba5ddf59d578df0569c821d25fc08c.jpeg

查找 get 分析

先通过hash计算得到键值对所在桶的位置,然后在对链表或红黑树进行查找

public V get(Object key) {
    Node<K,V> e;
    // 键值对 hash 的计算
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // 1.定位键值对所在桶的位置
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            // 2.如果 first 是 TreeNode 类型,则调用红黑树的查找方法
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 否则进行链表查找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

键值对 hash 的计算 hash 高16位数据与低16位数据进行异或运算,通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。 重新计算 hash 的另一个好处是可以增加 hash 的复杂度。当我们覆写 hashCode 方法时,可能会写出分布性不佳的 hashCode 方法,进而导致 hash 的冲突率比较高。通过移位和异或运算,可以让 hash 变得更复杂,进而影响 hash 的分布性。这也就是为什么 HashMap 不直接使用键对象原始 hash 的原因了

static final int hash(Object key) {
    int h;
    // hash 高16位数据与低16位数据进行异或运算,通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

计算键值对所在桶位置的说明: d4b21a83660b381237498061870fc883.jpeg

插入

  1. 当桶数组 table 为空时,通过扩容的方式初始化 table
  2. 查找要插入的键值对是否已经存在,存在的话根据条件判断是否用新值替换旧值
  3. 如果不存在,则将键值对链入链表中,并根据链表长度决定是否将链表转为红黑树
  4. 判断键值对数量是否大于阈值,大于的话则进行扩容操作
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

// onlyIfAbsent是true的话,不要改变现有的值
// evict为true的话,表处于创建模式
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 如果主干上的table为空,长度为0,调用resize方法,调整table的长度
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length; // 将调用resize后构造的数组的长度赋值给n

    // 如果桶中不包含键值对节点引用,则将新键值对节点的引用存入桶中即可
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        // 如果键的值以及节点 hash 等于链表中的第一个键值对节点时,则将 e 指向该键值对
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 如果桶中的引用类型为 TreeNode,则调用红黑树的插入方法
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            // 对链表进行遍历,并统计链表长度
            for (int binCount = 0; ; ++binCount) {
                // 链表中不包含要插入的键值对节点时,则将该节点接在链表的最后
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    // 如果链表长度大于或等于树化阈值,则进行树化操作
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        // 将普通节点链表转换成树形节点链表
                        treeifyBin(tab, hash);
                    break;
                }

                // 条件为 true,表示当前链表包含要插入的键值对,终止遍历
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }

        // 判断要插入的键值对是否存在 HashMap 中
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            // onlyIfAbsent 表示是否仅在 oldValue 为 null 的情况下更新键值对的值
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 键值对数量超过阈值时,则进行扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

将普通节点链表转换成树形节点链表

/**
 * 将普通节点链表转换成树形节点链表
 */
final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    // 桶数组容量小于 MIN_TREEIFY_CAPACITY,优先进行扩容而不是树化
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        // hd 为头节点(head),tl 为尾节点(tail)
        TreeNode<K,V> hd = null, tl = null;
        do {
            // 将普通节点替换成树形节点
            TreeNode<K,V> p = replacementTreeNode(e, null);
            if (tl == null)
                hd = p;
            else {
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null); // 将普通链表转成由树形节点链表
        if ((tab[index] = hd) != null)
            // 将树形链表转换成红黑树
            hd.treeify(tab);
    }
}

TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
    return new TreeNode<>(p.hash, p.key, p.value, next);
}

将树形链表转换成红黑树

HashMap的扩容

HashMap中桶数组的大小是2的幂,阈值大小为桶数组长度乘以负载因子。当HashMap的键值对数量超过阈值是,进行扩容。 HashMap按照原来桶大小的2倍进行扩容,阈值也变为原来2倍

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    // 如果 table 不为空,表明已经初始化过了
    if (oldCap > 0) {
        // 当 table 容量超过容量最大值,则不再扩容
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 按旧容量和阈值的2倍计算新容量和阈值的大小
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    // 调用 HashMap(int) 和 HashMap(int, float) 构造方法时走下边分支代码
    else if (oldThr > 0) // initial capacity was placed in threshold
        /*
         * 初始化时,将 threshold 的值赋值给 newCap,
         * HashMap 使用 threshold 变量暂时保存 initialCapacity 参数的值
         */
        newCap = oldThr; // 在初始化时传入的 initialCapacity 参数经过 threshold 中转最终赋值给了 newCap
    // 调用 HashMap() 构造方法走这分支逻辑
    else {               // zero initial threshold signifies using defaults
        /*
         * 调用无参构造方法时,桶数组容量为默认容量,
         * 阈值为默认容量与默认负载因子乘积
         */
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }

    // newThr 为 0 时,按阈值计算公式进行计算
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    // 创建新的桶数组,桶数组的初始化也是在这里完成的
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 如果旧的桶数组不为空,则遍历桶数组,并将键值对映射到新的桶数组中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    // 重新映射时,需要对红黑树进行拆分
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                // 进行链表的分组映射
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    // 遍历链表,并将链表节点按原顺序进行分组
                    do {
                        next = e.next;
                        // 将原链表数据分成两组
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e; // 如果还有其他元素,将前一个元素的next指向节点
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);

                    // 将分组后的链表映射到新桶中
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}
  1. 计算新桶数组的容量 newCap 和新阈值 newThr
  2. 根据计算出的 newCap 创建新的桶数组,桶数组 table 也是在这里进行初始化的
  3. 将键值对节点重新映射到新的桶数组里。如果节点是 TreeNode 类型,则需要拆分红黑树。如果是普通节点,则节点按原顺序进行分组。

链表的分组映射 桶扩容后,同一个链上的桶位置的计算 171684d0f6487b0110ce583140c05f9a.jpeg

扩容之前数据 184befcf629e52269eafe3cd5ffea13a.jpeg

  1. 遍历链表,根据 hash & oldCap 的值是否为0,分成2组,为什么这样分???? 99330fbe2690771e16a3a330a5844d25.jpeg

  2. 根据上面计算的值是否为0,分成两组,构造两条链表 473272294fbf4f35f1068a114d711a83.jpeg

  3. 对于组的值为0的桶下标还是为扩容的值,对于不为0的组,桶下标值为:原来桶大小 + 原来数组下标 dc5583a955c4435c3a009930ac4e4850.jpeg

红黑树拆分 链表转换成红黑树时,HashMap会通过两个额外的引用 next 和 prev 保留了原链表的节点顺序。这样再对红黑树进行重新映射时,完全可以按照映射链表的方式进行。

// 红黑树转链表阈值
static final int UNTREEIFY_THRESHOLD = 6;

final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
    TreeNode<K,V> b = this;
    // Relink into lo and hi lists, preserving order
    TreeNode<K,V> loHead = null, loTail = null;
    TreeNode<K,V> hiHead = null, hiTail = null;
    int lc = 0, hc = 0;
    /*
     * 红黑树节点仍然保留了 next 引用,故仍可以按链表方式遍历红黑树。
     * 下面的循环是对红黑树节点进行分组,与上面类似
     */
    for (TreeNode<K,V> e = b, next; e != null; e = next) {
        next = (TreeNode<K,V>)e.next;
        e.next = null;
        if ((e.hash & bit) == 0) {
            if ((e.prev = loTail) == null)
                loHead = e;
            else
                loTail.next = e;
            loTail = e;
            ++lc;
        }
        else {
            if ((e.prev = hiTail) == null)
                hiHead = e;
            else
                hiTail.next = e;
            hiTail = e;
            ++hc;
        }
    }

    if (loHead != null) {
        // 如果 loHead 不为空,且链表长度小于等于 6,则将红黑树转成链表
        if (lc <= UNTREEIFY_THRESHOLD)
            tab[index] = loHead.untreeify(map);
        else {
            tab[index] = loHead;
            /*
             * hiHead == null 时,表明扩容后,
             * 所有节点仍在原位置,树结构不变,无需重新树化
             */
            if (hiHead != null) // (else is already treeified)
                loHead.treeify(tab);
        }
    }
    // 逻辑同上
    if (hiHead != null) {
        if (hc <= UNTREEIFY_THRESHOLD)
            tab[index + bit] = hiHead.untreeify(map);
        else {
            tab[index + bit] = hiHead;
            if (loHead != null)
                hiHead.treeify(tab);
        }
    }
}

红黑树链化

final Node<K,V> untreeify(HashMap<K,V> map) {
    Node<K,V> hd = null, tl = null;
    // 遍历 TreeNode 链表,并用 Node 替换
    for (Node<K,V> q = this; q != null; q = q.next) {
        // 替换节点类型
        Node<K,V> p = map.replacementNode(q, null);
        if (tl == null)
            hd = p;
        else
            tl.next = p;
        tl = p;
    }
    return hd;
}

Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
    return new Node<>(p.hash, p.key, p.value, next);
}

删除操作

第一步是定位桶位置,第二步遍历链表并找到键值相等的节点,第三步删除节点。

public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}

final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        // 1. 定位桶位置
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        // 如果键的值与链表第一个节点相等,则将 node 指向该节点
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {
            // 如果键的值与链表第一个节点相等,则将 node 指向该节点
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                // 2. 遍历链表,找到待删除节点
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }

        // 3. 删除节点,并修复链表或红黑树
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

遍历

遍历 HashMap

for(Object key : map.keySet()) {
    // do something
}
或

for(HashMap.Entry entry : map.entrySet()) {
    // do something
}

foreach 遍历 keySet 方法产生的集合,在编译时会转换成用迭代器遍历,等价于:

Set keys = map.keySet();
Iterator ite = keys.iterator();
while (ite.hasNext()) {
    Object key = ite.next();
    // do something
}

源码遍历操作

public Set<K> keySet() {
    Set<K> ks = keySet;
    if (ks == null) {
        ks = new KeySet();
        keySet = ks;
    }
    return ks;
}

/**
 * 键集合
 */
final class KeySet extends AbstractSet<K> {
    public final int size()                 { return size; }
    public final void clear()               { HashMap.this.clear(); }
    public final Iterator<K> iterator()     { return new KeyIterator(); }
    public final boolean contains(Object o) { return containsKey(o); }
    public final boolean remove(Object key) {
        return removeNode(hash(key), key, null, false, true) != null;
    }
    public final Spliterator<K> spliterator() {
        return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
    }
    public final void forEach(Consumer<? super K> action) {
        // 省略部分代码
    }
}

/**
 * 键迭代器
 */
final class KeyIterator extends HashIterator
    implements Iterator<K> {
    public final K next() { return nextNode().key; }
}

abstract class HashIterator {
    Node<K,V> next;        // next entry to return
    Node<K,V> current;     // current entry
    int expectedModCount;  // for fast-fail
    int index;             // current slot

    HashIterator() {
        expectedModCount = modCount;
        Node<K,V>[] t = table;
        current = next = null;
        index = 0;
        if (t != null && size > 0) { // advance to first entry
            // 寻找第一个包含链表节点引用的桶
            do {} while (index < t.length && (next = t[index++]) == null);
        }
    }

    public final boolean hasNext() {
        return next != null;
    }

    final Node<K,V> nextNode() {
        Node<K,V>[] t;
        Node<K,V> e = next;
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        if (e == null)
            throw new NoSuchElementException();
        if ((next = (current = e).next) == null && (t = table) != null) {
            // 寻找下一个包含链表节点引用的桶
            do {} while (index < t.length && (next = t[index++]) == null);
        }
        return e;
    }

    // 省略部分代码
}

遍历路径 b67b8964c3e2f059fc9944584e542060.jpeg

HashMap 的序列化与反序列化

// transient表示不会被默认的序列化机制序列化。
transient Node<K,V>[] table;

HashMap 并没有使用默认的序列化机制,而是通过实现readObject/writeObject两个方法自定义了序列化的内容。 原因:只要我们把键值对序列化就可以根据其键值对重建HashMap 为什么不直接序列化 table 的原因:

  1. table 多数情况下是无法被存满的,序列化未使用的部分,浪费空间
  2. 同一个键值对在不同 JVM 下,所处的桶位置可能是不同的,在不同的 JVM 下反序列化 table 可能会发生错误, HashMap中的许多方法第一步是根据hash定位到桶的位置,如果我们的键未覆写hashcode方法,计算hash的时候最终调用的是Object类的hashcode 方法,但是这个方法是一个native的,不同 的JVM下,可能会有不同的实现,产生的hash值也不一样
⚠️ **GitHub.com Fallback** ⚠️