HashMap 源码分析 - litter-fish/ReadSource GitHub Wiki
HashMap基于拉链式的算法,其数据结构由数组+链表+树组成
一些属性
// 默认初始化容量 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
// 默认负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当前 HashMap 所能容纳键值对数量的最大值,超过这个值,则需扩容
int threshold;
// 负载因子
final float loadFactor;
// transient表示不会被默认的序列化机制序列化。
transient Node<K,V>[] table;
为什么默认初始大小为2<<4(16) 为什么是2的幂?为什么是16,而不是8或32? 第一个问题:获取key再数组中的位置:(n-1)&hash,当初始化大小为2的幂时,(n-1)&hash等价于n%hash,为什么不直接用取余? 与运算(&)比取余运算效率更高,
为何是16:折中,取小了会频繁扩容,取大了浪费空间
默认加载因子为啥是0.75? 加载因子表示哈希表的填满程度,和扩容息息相关,为何不是其他值如0.5或1? 如果是0.5表示哈希表填到一半就会进行扩容,这样导致扩容频繁,空间利用率低。 如果是1表示哈希表填满了才进行扩容,会加大hash冲突。
最后取0.7是为了权衡hash冲突和空间利用率
链表转红黑树的阈值为何是8? 树节点的所占空间时普通节点的两倍大小, 当随机hashcode离散性很好时,树形bin用到的概率很小,因为数据均匀分布在每个bin中,几乎不会有bin中链表长度达到阈值。 但是如果非理想的hashcode情况下,数据离散性会变差,导致数据分布不均匀 不过随机hashcode的所有bin中节点的分布频率遵循柏松分布,当bin中链表长度达到8时概率变成非常小,几乎不可能出现。
树的链表还原阈值为何是6? 防止树和链表进行频繁的转换,
最大容量为何是1<<30? int占4个字节,一个字节8位即32位,
hash表的最小树形化容量为何是64? 容量低于64时,hash碰撞概率比较大,出现长链表的可能性会稍微大些,这种原因产生的长链表优先扩容而不是树化。
构造函数
/**
* 默认初始化容量:16
* 默认负载因子:0.75
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
初始阈值的计算
// tableSizeFor的作用就是,如果传入A,当A大于0,小于定义的最大容量时,
// 如果A是2次幂则返回A,否则将A转化为一个比A大且差距最小的2次幂。
// 例如传入7返回8,传入8返回8,传入9返回16
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
先通过hash计算得到键值对所在桶的位置,然后在对链表或红黑树进行查找
public V get(Object key) {
Node<K,V> e;
// 键值对 hash 的计算
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 1.定位键值对所在桶的位置
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 2.如果 first 是 TreeNode 类型,则调用红黑树的查找方法
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 否则进行链表查找
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
键值对 hash 的计算 hash 高16位数据与低16位数据进行异或运算,通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。 重新计算 hash 的另一个好处是可以增加 hash 的复杂度。当我们覆写 hashCode 方法时,可能会写出分布性不佳的 hashCode 方法,进而导致 hash 的冲突率比较高。通过移位和异或运算,可以让 hash 变得更复杂,进而影响 hash 的分布性。这也就是为什么 HashMap 不直接使用键对象原始 hash 的原因了
static final int hash(Object key) {
int h;
// hash 高16位数据与低16位数据进行异或运算,通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
计算键值对所在桶位置的说明:
- 当桶数组 table 为空时,通过扩容的方式初始化 table
- 查找要插入的键值对是否已经存在,存在的话根据条件判断是否用新值替换旧值
- 如果不存在,则将键值对链入链表中,并根据链表长度决定是否将链表转为红黑树
- 判断键值对数量是否大于阈值,大于的话则进行扩容操作
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
// onlyIfAbsent是true的话,不要改变现有的值
// evict为true的话,表处于创建模式
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 如果主干上的table为空,长度为0,调用resize方法,调整table的长度
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length; // 将调用resize后构造的数组的长度赋值给n
// 如果桶中不包含键值对节点引用,则将新键值对节点的引用存入桶中即可
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
// 如果键的值以及节点 hash 等于链表中的第一个键值对节点时,则将 e 指向该键值对
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果桶中的引用类型为 TreeNode,则调用红黑树的插入方法
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 对链表进行遍历,并统计链表长度
for (int binCount = 0; ; ++binCount) {
// 链表中不包含要插入的键值对节点时,则将该节点接在链表的最后
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 如果链表长度大于或等于树化阈值,则进行树化操作
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// 将普通节点链表转换成树形节点链表
treeifyBin(tab, hash);
break;
}
// 条件为 true,表示当前链表包含要插入的键值对,终止遍历
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 判断要插入的键值对是否存在 HashMap 中
if (e != null) { // existing mapping for key
V oldValue = e.value;
// onlyIfAbsent 表示是否仅在 oldValue 为 null 的情况下更新键值对的值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 键值对数量超过阈值时,则进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
将普通节点链表转换成树形节点链表
/**
* 将普通节点链表转换成树形节点链表
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
// 桶数组容量小于 MIN_TREEIFY_CAPACITY,优先进行扩容而不是树化
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
// hd 为头节点(head),tl 为尾节点(tail)
TreeNode<K,V> hd = null, tl = null;
do {
// 将普通节点替换成树形节点
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null); // 将普通链表转成由树形节点链表
if ((tab[index] = hd) != null)
// 将树形链表转换成红黑树
hd.treeify(tab);
}
}
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
return new TreeNode<>(p.hash, p.key, p.value, next);
}
将树形链表转换成红黑树
HashMap中桶数组的大小是2的幂,阈值大小为桶数组长度乘以负载因子。当HashMap的键值对数量超过阈值是,进行扩容。 HashMap按照原来桶大小的2倍进行扩容,阈值也变为原来2倍
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
// 如果 table 不为空,表明已经初始化过了
if (oldCap > 0) {
// 当 table 容量超过容量最大值,则不再扩容
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 按旧容量和阈值的2倍计算新容量和阈值的大小
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
// 调用 HashMap(int) 和 HashMap(int, float) 构造方法时走下边分支代码
else if (oldThr > 0) // initial capacity was placed in threshold
/*
* 初始化时,将 threshold 的值赋值给 newCap,
* HashMap 使用 threshold 变量暂时保存 initialCapacity 参数的值
*/
newCap = oldThr; // 在初始化时传入的 initialCapacity 参数经过 threshold 中转最终赋值给了 newCap
// 调用 HashMap() 构造方法走这分支逻辑
else { // zero initial threshold signifies using defaults
/*
* 调用无参构造方法时,桶数组容量为默认容量,
* 阈值为默认容量与默认负载因子乘积
*/
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// newThr 为 0 时,按阈值计算公式进行计算
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
// 创建新的桶数组,桶数组的初始化也是在这里完成的
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 如果旧的桶数组不为空,则遍历桶数组,并将键值对映射到新的桶数组中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 重新映射时,需要对红黑树进行拆分
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
// 进行链表的分组映射
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
// 遍历链表,并将链表节点按原顺序进行分组
do {
next = e.next;
// 将原链表数据分成两组
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e; // 如果还有其他元素,将前一个元素的next指向节点
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 将分组后的链表映射到新桶中
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
- 计算新桶数组的容量 newCap 和新阈值 newThr
- 根据计算出的 newCap 创建新的桶数组,桶数组 table 也是在这里进行初始化的
- 将键值对节点重新映射到新的桶数组里。如果节点是 TreeNode 类型,则需要拆分红黑树。如果是普通节点,则节点按原顺序进行分组。
链表的分组映射
桶扩容后,同一个链上的桶位置的计算
扩容之前数据
-
遍历链表,根据 hash & oldCap 的值是否为0,分成2组,为什么这样分????
-
根据上面计算的值是否为0,分成两组,构造两条链表
-
对于组的值为0的桶下标还是为扩容的值,对于不为0的组,桶下标值为:原来桶大小 + 原来数组下标
红黑树拆分 链表转换成红黑树时,HashMap会通过两个额外的引用 next 和 prev 保留了原链表的节点顺序。这样再对红黑树进行重新映射时,完全可以按照映射链表的方式进行。
// 红黑树转链表阈值
static final int UNTREEIFY_THRESHOLD = 6;
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
/*
* 红黑树节点仍然保留了 next 引用,故仍可以按链表方式遍历红黑树。
* 下面的循环是对红黑树节点进行分组,与上面类似
*/
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}
if (loHead != null) {
// 如果 loHead 不为空,且链表长度小于等于 6,则将红黑树转成链表
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
/*
* hiHead == null 时,表明扩容后,
* 所有节点仍在原位置,树结构不变,无需重新树化
*/
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
// 逻辑同上
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}
红黑树链化
final Node<K,V> untreeify(HashMap<K,V> map) {
Node<K,V> hd = null, tl = null;
// 遍历 TreeNode 链表,并用 Node 替换
for (Node<K,V> q = this; q != null; q = q.next) {
// 替换节点类型
Node<K,V> p = map.replacementNode(q, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}
Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
return new Node<>(p.hash, p.key, p.value, next);
}
第一步是定位桶位置,第二步遍历链表并找到键值相等的节点,第三步删除节点。
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
// 1. 定位桶位置
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
// 如果键的值与链表第一个节点相等,则将 node 指向该节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
// 如果键的值与链表第一个节点相等,则将 node 指向该节点
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
// 2. 遍历链表,找到待删除节点
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
// 3. 删除节点,并修复链表或红黑树
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
遍历 HashMap
for(Object key : map.keySet()) {
// do something
}
或
for(HashMap.Entry entry : map.entrySet()) {
// do something
}
foreach 遍历 keySet 方法产生的集合,在编译时会转换成用迭代器遍历,等价于:
Set keys = map.keySet();
Iterator ite = keys.iterator();
while (ite.hasNext()) {
Object key = ite.next();
// do something
}
源码遍历操作
public Set<K> keySet() {
Set<K> ks = keySet;
if (ks == null) {
ks = new KeySet();
keySet = ks;
}
return ks;
}
/**
* 键集合
*/
final class KeySet extends AbstractSet<K> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<K> iterator() { return new KeyIterator(); }
public final boolean contains(Object o) { return containsKey(o); }
public final boolean remove(Object key) {
return removeNode(hash(key), key, null, false, true) != null;
}
public final Spliterator<K> spliterator() {
return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super K> action) {
// 省略部分代码
}
}
/**
* 键迭代器
*/
final class KeyIterator extends HashIterator
implements Iterator<K> {
public final K next() { return nextNode().key; }
}
abstract class HashIterator {
Node<K,V> next; // next entry to return
Node<K,V> current; // current entry
int expectedModCount; // for fast-fail
int index; // current slot
HashIterator() {
expectedModCount = modCount;
Node<K,V>[] t = table;
current = next = null;
index = 0;
if (t != null && size > 0) { // advance to first entry
// 寻找第一个包含链表节点引用的桶
do {} while (index < t.length && (next = t[index++]) == null);
}
}
public final boolean hasNext() {
return next != null;
}
final Node<K,V> nextNode() {
Node<K,V>[] t;
Node<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
if ((next = (current = e).next) == null && (t = table) != null) {
// 寻找下一个包含链表节点引用的桶
do {} while (index < t.length && (next = t[index++]) == null);
}
return e;
}
// 省略部分代码
}
遍历路径
// transient表示不会被默认的序列化机制序列化。
transient Node<K,V>[] table;
HashMap 并没有使用默认的序列化机制,而是通过实现readObject/writeObject两个方法自定义了序列化的内容。 原因:只要我们把键值对序列化就可以根据其键值对重建HashMap 为什么不直接序列化 table 的原因:
- table 多数情况下是无法被存满的,序列化未使用的部分,浪费空间
- 同一个键值对在不同 JVM 下,所处的桶位置可能是不同的,在不同的 JVM 下反序列化 table 可能会发生错误, HashMap中的许多方法第一步是根据hash定位到桶的位置,如果我们的键未覆写hashcode方法,计算hash的时候最终调用的是Object类的hashcode 方法,但是这个方法是一个native的,不同 的JVM下,可能会有不同的实现,产生的hash值也不一样