JupyterHub | Kale | Kubeflow Pipelines | on local Kubernetes cluster - konsloiz/masters-thesis GitHub Wiki

Installation Steps

1. JupyterHub

Follow this guide

Recommended Helm JupyterHub chart: helm install jhub-datascience jupyterhub/jupyterhub --version=v0.11.0 -f config.yaml -n jupyter --timeout 180s

To allow git-cloning, run in a terminal from a notebook server:

git config --global http.sslverify false

Important: Due to Kale compatibility reasons (can run on "jupyterlab>=2.0.0,<3.0.0"), install any Helm JupyterHub chart >=0.10.0,<=0.11.0.

2. Kale

For a server-notebook standalone installation, open a terminal inside JupyterLab and enter the following commands:

npm config set strict-ssl false

npm install --global yarn

yarn config set "strict-ssl" false

pip install kubeflow-kale

jupyter labextension install kubeflow-kale-labextension

jupyter lab build and refresh

3 Kubeflow Pipelines

Follow this guide

export PIPELINE_VERSION=1.7.0

kubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref=$PIPELINE_VERSION"

kubectl wait --for condition=established --timeout=60s crd/applications.app.k8s.io

kubectl apply -k "github.com/kubeflow/pipelines/manifests/kustomize/env/dev?ref=$PIPELINE_VERSION"

kubectl port-forward -n kubeflow svc/ml-pipeline-ui 8080:80

Open the Kubeflow Pipelines UI at http://localhost:8080/

Possible solution

[Multi User] failed to call kfp.Client().create_run_from_pipeline_func in in-cluster juypter notebook #4440