Graphs - kenhendricks00/DiscreteMathematics GitHub Wiki

Definitions

Graph: G = (V, E)

A graph is made of a set with Nodes(Vertices) and another set with Edges which connects Nodes.

Adjacent, Incident

when nodes U and V are connected with an edge E, nodes U and V are Adjacent and E is Incident to U and V

Loop

An edge with only one incident node.

Multi-Graph

when there's more than one edge between two nodes.

Directed Graph: G = <V, E>

Edges are represented as arrows with directions.

Weighted Graph: W = [u,v]

Edges contain weights

Degree: d(v)

number of incident edges to node v.

For directed graphs:

out degree: edges going outwards a node.

in degree: edges coming towards a node.

Types

Subgraph

includes only partial nodes and partial edges

Spanning Graph

all nodes but only partial edges

Isomorphic Graph

Two graphs which contain the same number of graph vertices connected in the same way are said to be isomorphic

Planar Graph

A graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other

Complete Graph

for all n nodes in a graph, each node should have n - 1 edges

Bipartite Graph

a graph whose vertices can be divided into two disjoint and independent sets and such that every edge connects a vertex in to one in

⚠️ **GitHub.com Fallback** ⚠️