Axiom 2 - justindbilyeu/ResonanceGeometry GitHub Wiki
π§± Axiom 2: Form Is Frozen Resonance
Formal expression:
$begin:math:display$
\text{Imprint}(\mathcal{R}) = \mathcal{F}
$end:math:display$
π§ Core Axiom
βForm is the memory of resonance.β
Matter, geometry, and identity emerge as stabilized patterns within an underlying resonance field. The projection of lived resonance becomes encoded as physical structure.
π Mathematical Interpretation
Let $begin:math:text$ \mathcal{R} $end:math:text$ be the resonance field β a vector-valued, time-evolving function on some latent manifold $begin:math:text$ \mathcal{M} $end:math:text$.
We define form $begin:math:text$ \mathcal{F} $end:math:text$ as:
$begin:math:display$ \mathcal{F} := \lim_{\Delta t \to \infty} \frac{1}{\Delta t} \int_{t}^{t + \Delta t} \mathcal{R}(x, t')\, dt' $end:math:display$
This is the temporal average of resonant excitation β a βfrozenβ imprint in configuration space.
π Examples in Physics and Mind
Domain | Resonance Field $begin:math:text$ \mathcal{R} $end:math:text$ | Frozen Form $begin:math:text$ \mathcal{F} $end:math:text$ |
---|---|---|
Crystallography | Phonon vibration lattice | Atomic crystal lattice |
Memory | Hippocampal theta-gamma nested oscillations | Long-term synaptic potentiation (LTP) |
Morphogenesis | Cellular biochemical field | Organ form (shape, symmetry) |
Sacred geometry | Harmonic potentials over space | Platonic solids, Mandalas |
π Resonant Imprinting Operator
We define the imprint operator $begin:math:text$ \hat{\mathcal{I}} $end:math:text$:
$begin:math:display$ \hat{\mathcal{I}}[\mathcal{R}] = \mathcal{F} = \text{LowPass}_\omega(\mathcal{R}) $end:math:display$
Where $begin:math:text$ \text{LowPass}_\omega $end:math:text$ extracts only the stable resonant modes (e.g., eigenmodes).
Interpretation: Only frequencies below an emotional threshold persist into form.
π Information-Theoretic Form
Let $begin:math:text$ \mathcal{R}(x,t) \in L^2(\mathcal{M}) $end:math:text$. Then:
-
Define the resonance entropy: $begin:math:display$ S_{\mathcal{R}} = - \sum_k p_k \log p_k, \quad p_k = \frac{|\hat{\mathcal{R}}_k|^2}{\sum_j |\hat{\mathcal{R}}_j|^2} $end:math:display$
-
Define frozen form complexity: $begin:math:display$ C_{\mathcal{F}} = \dim(\text{Span}(\{\hat{\mathcal{R}}k\}{|k| < \omega_0})) $end:math:display$
Emotional salience acts as an effective low-pass filter on experience.
π Emotional Application: Trauma as Hardening
Trauma creates resonant overtones that donβt dissipate β leading to:
- Structural rigidity (in fascia, thought, posture)
- Emotional βform locksβ that resist adaptation
- Fixed-point attractors in neural dynamics
"Trauma is resonance that forgot how to flow."
π» Computational Analogy (PyTorch)
def freeze_resonance(resonance_signal: torch.Tensor, window: int = 100) -> torch.Tensor:
"""Computes temporal average as frozen form."""
kernel = torch.ones(window) / window
frozen = torch.conv1d(resonance_signal.unsqueeze(0), kernel.view(1,1,-1), padding='same')
return frozen.squeeze()
π Visual: Resonance β Form Flow
graph TD
R[Resonance Field π‘(t)] -->|Stabilizes| F[Form π]
R -->|Overtone β Dissipation| X[Lost Vibration]
F -->|Memory| M[Structure + Identity]
π Implications
- Geometry (in physics) and identity (in psychology) are boundary traces of stabilized resonance.
- Trauma, practice, devotion, ritual β all reshape form by intensifying certain resonances.
βWe are the echoes we choose to keep.β
β‘οΈ Back to Axioms
β‘οΈ Next: Axiom 3: Emotion Is Curvature