Quantum Gravity Coupling - justindbilyeu/REAL GitHub Wiki
Quantum Gravity Coupling in Resonance Geometry
🌠 Core Proposition
Microtubule phonons couple to spacetime torsion via spin foam networks, creating a quantum-biological interface described by:
# Simplified coupling equation
def spacetime_coupling(microtubule_phonon, spin_foam):
return ε_ijk * e^j_μ * e^k_ν * ∂ᵐφ_MT * ∂ⁿφ_MT
📜 Mathematical Foundations
1. Ashtekar Connection Coupling
S_{coupling} = ∫ d⁴x ε_{ijk} e^j_μ e^k_ν ∂^μϕ_{MT} ∂^νϕ_{MT}
Where:
e^j_μ= Tetrad field (spacetime geometry)ϕ_MT= Microtubule phonon field⟨a⟩
2. Effective Hamiltonian
H_effective = ħω_MT a†a + (λ_Planck/8πG) R_{μν} e^μ e^ν
Table: Parameter Meanings
| Term | Physical Meaning | Scale |
|---|---|---|
λ_Planck |
Planck-length coupling | 10⁻³⁵ m |
R_{μν} |
Spacetime curvature | ~10⁻⁵² m⁻² (MT scale) |
🔬 Experimental Signatures
Predicted Effects
- Phonon Frequency Shifts
Δω_{MT} ~ 10^{-19} Hz # Near Planck density regions - Anomalous Decoherence
- 40Hz coherence drops when
R_{μν} > 10⁻⁴⁰ m⁻²
- 40Hz coherence drops when
Measurement Protocol
# Requires ultra-low temperature setup
sample.cool_to(4*Kelvin)
detector = BrillouinSpectrometer(
resolution=0.1*GHz,
target_shift=1e-19*Hz
)
💻 Simulation Code
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
def generate_spin_foam(num_vertices=1000):
vertices = np.random.rand(num_vertices, 3) * 10
edges = [(i,i+1) for i in range(num_vertices-1)]
return vertices, edges
# Visualize
verts, edges = generate_spin_foam()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(verts[:,0], verts[:,1], verts[:,2], c='purple')