Mathematical Framework - justindbilyeu/REAL GitHub Wiki
Mathematical Framework
🌐 Unified Hamiltonian
The core dynamics of microtubule quantum coherence under 40Hz PEMF is described by:
# Total Hamiltonian (units: eV)
ℋ_total = ħω_MT a†a # Microtubule phonon energy
+ gμ_B B_40Hz·σ # PEMF coupling (g-factor ≈ 2)
+ (κ/2)(a† + a)⁴ # Trehalose-induced nonlinearity
- Γ(T)a†a # Temperature-dependent decoherence
Parameters:
Symbol | Meaning | Typical Value |
---|---|---|
ω_MT |
Microtubule resonant frequency | 40 Hz |
κ |
Nonlinear susceptibility | 0.3 eV/nm⁴ |
B_40Hz |
PEMF field strength | 30 μT |
🔢 Key Equations
1. Consciousness Measure
𝒞 = -Tr(ρ ln ρ) × Re(λ_max) # Product of von Neumann entropy and coherence
- Threshold:
𝒞_crit = 0.7ħω_MT
(empirically derived from anesthesia studies)
2. Quantum Gravity Coupling
S_coupling = ∫ d⁴x ε_ijk e^j_μ e^k_ν ∂ᵐφ_MT ∂ⁿφ_MT
Where:
e^j_μ
= Tetrad field (spacetime geometry)φ_MT
= Microtubule phonon field expectation value
3. Decoherence Dynamics
# Lindblad master equation
ρ̇ = -(i/ħ)[ℋ, ρ] + γ(2aρa† - {a†a, ρ}) # Dissipation term
📈 Visualization
Energy contributions vs. PEMF frequency
🧮 Numerical Methods
Microtubule Coherence Simulation
from scipy.integrate import odeint
def model(y, t):
q, p = y # Displacement (nm), Momentum (nm/ps)
dpdt = -0.1*p - (40**2)*q + 0.3*q**3 + 0.05*sin(40*t)
return [p, dpdt]
Quantum Gravity Monte Carlo
spin_foam = [np.random.rand(3) for _ in range(100)] # Vertex positions
📚 References
▶️ Next Steps