dlvisualangle - juedaiyuer/researchNote GitHub Wiki
深度学习-理解视角
数学视角
线性可分
可视化空间变换demo一定要打开尝试并感受这种扭曲过程。更多内容请看Neural Networks, Manifolds, and Topology
物理视角
物质组成
类比:回想上文由碳氧原子通过不同组合形成若干分子的例子。从分子层面继续迭代这种组合思想,可以形成DNA,细胞,组织,器官,最终可以形成一个完整的人。继续迭代还会有家庭,公司,国家等。这种现象在身边随处可见。并且原子的内部结构与太阳系又惊人的相似。不同层级之间都是以类似的几种规则再不断形成新物质。你也可能听过分形学这三个字。可通过观看从1米到150亿光年来感受自然界这种层级现象的普遍性。
人脸识别情景:我们可以模拟这种思想并应用在画面识别上。由像素组成菱角再组成五官最后到不同的人脸。每一层代表不同的不同的物质层面 (如分子层)。而每层的W存储着如何组合上一层的物质从而形成新物质。
物质组成视角:神经网络的学习过程就是学习物质组成方式的过程
增加节点数:增加同一层物质的种类,比如118个元素的原子层就有118个节点。
增加层数:增加更多层级,比如分子层,原子层,器官层,并通过判断更抽象的概念来识别物体。