cifar10tfcnn - juedaiyuer/researchNote GitHub Wiki
CIFAR-10数据集的CNN
1. 关于数据集
想了解更多信息请参考CIFAR-10 page,以及Alex Krizhevsky写的技术报告
Cifar-10是由Hinton的两个大弟子Alex Krizhevsky、Ilya Sutskever收集的一个用于普适物体识别的数据集。Cifar是加拿大政府牵头投资的一个先进科学项目研究所。
说白了,就是看你穷的没钱搞研究,就施舍给你。Hinton、Bengio和他的学生在2004年拿到了Cifar投资的少量资金,建立了神经计算和自适应感知项目。
这个项目结集了不少计算机科学家、生物学家、电气工程师、神经科学家、物理学家、心理学家,加速推动了DL的进程。从这个阵容来看,DL已经和ML系的数据挖掘分的很远了。
DL强调的是自适应感知和人工智能,是计算机与神经科学交叉。DM强调的是高速、大数据、统计数学分析,是计算机和数学的交叉。
Cifar-10由60000张32*32的RGB彩色图片构成,共10个分类(airplane,automobile,bird,cat,deer,dog,frog,horse,ship,truck)。50000张训练,10000张测试(交叉验证)。这个数据集最大的特点在于将识别迁移到了普适物体,而且应用于多分类(姊妹数据集Cifar-100达到100类,ILSVRC比赛则是1000类)。
许多论文中都对这个数据集进行性能测试,state-of-the-art达到了3.5%的错误率
2. 下载models库
对于版本在v1.0以上的需要下载Tensorflow Models库,以便使用其中提供的Cifar-10数据的类
$ git clone https://github.com/tensorflow/models.git
$ cd models/tutorials/image/cifar10
3. 定义初始化weight函数
Note:对weights进行L2的正则化
def variable_with_weight_loss(shape, stddev, wl):
var = tf.Variable(tf.truncated_normal(shape, stddev=stddev))
if wl is not None:
weight_loss = tf.multiply(tf.nn.l2_loss(var), wl, name='weight_loss')
tf.add_to_collection('losses', weight_loss)
return var
wl:loss的参数,控制loss的影响,越大影响越大
tf.nn.l2_loss(var),计算了weight的L2 Loss
4. 数据集操作
下载,解压,展开到默认位置
cifar10.maybe_download_and_extract()
cifar10_input类中的distorted_inputs函数产生训练需要使用的数据,包括特征及其对应的label,返回的是封装好的tensor
Note:对数据进行了数据增强操作Data Augmentation
输入数据的placeholder,样本条数需要被预先设定
image_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])
label_holder = tf.placeholder(tf.int32, [batch_size])
4.1 数据增强
Data Augmentation
它可以给单幅图增加多个副本,提高图片的利用率,防止学习过拟合
根据Alex在cuda-convnet上的测试结果,如果不用数据增强,错误率最低可以下降到17%;使用数据增强,错误率下降到11%,模型性能的提升非常显著
5. 第一个卷积层
卷积核:5×5
颜色通道:3个
卷积核数目:64个
weight初始化函数:标准差0.05,wl=0(不进行L2的正则)
weight1 = variable_with_weight_loss(shape=[5, 5, 3, 64], stddev=5e-2, wl=0.0)
卷积操作
kernel1 = tf.nn.conv2d(image_holder, weight1, [1, 1, 1, 1], padding='SAME')
偏置参数初始化为0
bias1 = tf.Variable(tf.constant(0.0, shape=[64]))
卷积结果加上bias1
tf.nn.bias_add(kernel1, bias1)
最大池化层处理数据
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],padding='SAME')
用LRN对结果进行处理
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
6. 第二个卷积层
上一层的卷积核数量为64(即输出64个通道),即第三个参数相应改为64.
weight2 = variable_with_weight_loss(shape=[5, 5, 64, 64], stddev=5e-2, wl=0.0)
先进行LRN层处理,再使用最大池化层
7. 第一个全连接层
隐含节点数:384
将第二个卷积层的输出结果flatten(翻译:扁平化,即变为1维数据),使用tf.reshape函数
reshape = tf.reshape(pool2, [batch_size, -1])
获取数据扁平化后的长度
dim = reshape.get_shape()[1].value
8. 第二个全连接层
隐含节点数:192
9. 最后一层
不使用softmax输出最后结果
以上是CNN的模型构建,整个网络inference的部分
loss
交叉熵 cross entropy
softmax计算和cross entropy loss计算的合并tf.nn.sparse_softmax_cross_entropy_with_logits
源代码如下
import cifar10,cifar10_input
import tensorflow as tf
import numpy as np
import time
max_steps = 3000
batch_size = 128
data_dir = '/tmp/cifar10_data/cifar-10-batches-bin'
def variable_with_weight_loss(shape, stddev, wl):
var = tf.Variable(tf.truncated_normal(shape, stddev=stddev))
if wl is not None:
weight_loss = tf.multiply(tf.nn.l2_loss(var), wl, name='weight_loss')
tf.add_to_collection('losses', weight_loss)
return var
def loss(logits, labels):
# """Add L2Loss to all the trainable variables.
# Add summary for "Loss" and "Loss/avg".
# Args:
# logits: Logits from inference().
# labels: Labels from distorted_inputs or inputs(). 1-D tensor
# of shape [batch_size]
# Returns:
# Loss tensor of type float.
# """
# # Calculate the average cross entropy loss across the batch.
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
# The total loss is defined as the cross entropy loss plus all of the weight
# decay terms (L2 loss).
return tf.add_n(tf.get_collection('losses'), name='total_loss')
###
cifar10.maybe_download_and_extract()
images_train, labels_train = cifar10_input.distorted_inputs(data_dir=data_dir,
batch_size=batch_size)
images_test, labels_test = cifar10_input.inputs(eval_data=True,
data_dir=data_dir,
batch_size=batch_size)
#images_train, labels_train = cifar10.distorted_inputs()
#images_test, labels_test = cifar10.inputs(eval_data=True)
image_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])
label_holder = tf.placeholder(tf.int32, [batch_size])
#logits = inference(image_holder)
weight1 = variable_with_weight_loss(shape=[5, 5, 3, 64], stddev=5e-2, wl=0.0)
kernel1 = tf.nn.conv2d(image_holder, weight1, [1, 1, 1, 1], padding='SAME')
bias1 = tf.Variable(tf.constant(0.0, shape=[64]))
conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='SAME')
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
weight2 = variable_with_weight_loss(shape=[5, 5, 64, 64], stddev=5e-2, wl=0.0)
kernel2 = tf.nn.conv2d(norm1, weight2, [1, 1, 1, 1], padding='SAME')
bias2 = tf.Variable(tf.constant(0.1, shape=[64]))
conv2 = tf.nn.relu(tf.nn.bias_add(kernel2, bias2))
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='SAME')
reshape = tf.reshape(pool2, [batch_size, -1])
dim = reshape.get_shape()[1].value
weight3 = variable_with_weight_loss(shape=[dim, 384], stddev=0.04, wl=0.004)
bias3 = tf.Variable(tf.constant(0.1, shape=[384]))
local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)
weight4 = variable_with_weight_loss(shape=[384, 192], stddev=0.04, wl=0.004)
bias4 = tf.Variable(tf.constant(0.1, shape=[192]))
local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)
weight5 = variable_with_weight_loss(shape=[192, 10], stddev=1/192.0, wl=0.0)
bias5 = tf.Variable(tf.constant(0.0, shape=[10]))
logits = tf.add(tf.matmul(local4, weight5), bias5)
loss = loss(logits, label_holder)
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss) #0.72
top_k_op = tf.nn.in_top_k(logits, label_holder, 1)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
tf.train.start_queue_runners()
###
for step in range(max_steps):
start_time = time.time()
image_batch,label_batch = sess.run([images_train,labels_train])
_, loss_value = sess.run([train_op, loss],feed_dict={image_holder: image_batch,
label_holder:label_batch})
duration = time.time() - start_time
if step % 10 == 0:
examples_per_sec = batch_size / duration
sec_per_batch = float(duration)
format_str = ('step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)')
print(format_str % (step, loss_value, examples_per_sec, sec_per_batch))
###
num_examples = 10000
import math
num_iter = int(math.ceil(num_examples / batch_size))
true_count = 0
total_sample_count = num_iter * batch_size
step = 0
while step < num_iter:
image_batch,label_batch = sess.run([images_test,labels_test])
predictions = sess.run([top_k_op],feed_dict={image_holder: image_batch,
label_holder:label_batch})
true_count += np.sum(predictions)
step += 1
precision = true_count / total_sample_count
print('precision @ 1 = %.3f' % precision)
source
- CNN训练Cifar-10技巧
- Tensorflow实战 黄文坚 唐源 5.3章 Tensorflow实现进阶的卷积网络
- 卷积神经网络 极客学院