ζ(1;6) - johanzumimvon/1 GitHub Wiki
ζ( $\frac{3}{2}$ )= $\frac{2}{\sqrt{\pi}}\int\limits^{\infty}_{0} \frac{\sqrt{x}}{\mathrm{e}^{x} - 1} \mathrm{d}x$
=2.61237534868548834334856756792407163057080065240006340757332824881492776768827286099624386812631195238297
=2;742226##0243734908∗∗(十二进制)
ボㇲ·エイㇴㇲテイㇴ凝聚态的临界温度
$\mathrm{\Theta_{c}=\sqrt[3]{(\frac{n}{\mathrm{\zeta}(1;6)})^{2}}\frac{2\pi\hbar^{2}}{mk_{B}}}$
草稿
θ=2.2
ζ(1.5)=2.6123753486854883433485675679
ℏ=1.054571800×10^{-34}
m=4.0026020×1.667×10^(−27)
kB=1.380649×10−23
n= $\mathrm{\sqrt{[\frac{\Theta_{c}mk_{B}}{2\pi\hbar^{2} }]^{3}}}$ ζ( $\frac{3}{2}$ )
通过此式子,可知液态氦四在超流体时的密度为
$\frac{n}{6.022\cdot 10^{23}\mathrm{mol}^{-1}}$=21416 mol·m⁻³(摩尔体积的倒数)
21416mol He=86Kg He
ρ=86 Kg·m⁻³
也就是氦在临界温度时的密度为水的0.086倍。(大约 $\frac{1}{12}$ )