Wiring.c - jimaobian/DFRobotWikiCn GitHub Wiki

/*
  wiring.c - Partial implementation of the Wiring API for the ATmega8.
  Part of Arduino - http://www.arduino.cc/

  Copyright (c) 2005-2006 David A. Mellis

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General
  Public License along with this library; if not, write to the
  Free Software Foundation, Inc., 59 Temple Place, Suite 330,
  Boston, MA  02111-1307  USA

  $Id$
*/

#include "wiring_private.h"

// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
// the overflow handler is called every 256 ticks.
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))

// the whole number of milliseconds per timer0 overflow
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)

// the fractional number of milliseconds per timer0 overflow. we shift right
// by three to fit these numbers into a byte. (for the clock speeds we care
// about - 8 and 16 MHz - this doesn't lose precision.)
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
#define FRACT_MAX (1000 >> 3)

volatile unsigned long timer0_overflow_count = 0;
volatile unsigned long timer0_millis = 0;
static unsigned char timer0_fract = 0;

#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ISR(TIM0_OVF_vect)
#else
ISR(TIMER0_OVF_vect)
#endif
{
    // copy these to local variables so they can be stored in registers
    // (volatile variables must be read from memory on every access)
    unsigned long m = timer0_millis;
    unsigned char f = timer0_fract;

    m += MILLIS_INC;
    f += FRACT_INC;
    if (f >= FRACT_MAX) {
        f -= FRACT_MAX;
        m += 1;
    }

    timer0_fract = f;
    timer0_millis = m;
    timer0_overflow_count++;
}

unsigned long millis()
{
    unsigned long m;
    uint8_t oldSREG = SREG;

    // disable interrupts while we read timer0_millis or we might get an
    // inconsistent value (e.g. in the middle of a write to timer0_millis)
    cli();
    m = timer0_millis;
    SREG = oldSREG;

    return m;
}

unsigned long micros() {
    unsigned long m;
    uint8_t oldSREG = SREG, t;

    cli();
    m = timer0_overflow_count;
#if defined(TCNT0)
    t = TCNT0;
#elif defined(TCNT0L)
    t = TCNT0L;
#else
    #error TIMER 0 not defined
#endif


#ifdef TIFR0
    if ((TIFR0 & _BV(TOV0)) && (t < 255))
        m++;
#else
    if ((TIFR & _BV(TOV0)) && (t < 255))
        m++;
#endif

    SREG = oldSREG;

    return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
}

void delay(unsigned long ms)
{
    uint16_t start = (uint16_t)micros();

    while (ms > 0) {
        if (((uint16_t)micros() - start) >= 1000) {
            ms--;
            start += 1000;
        }
    }
}

/* Delay for the given number of microseconds.  Assumes a 8 or 16 MHz clock. */
void delayMicroseconds(unsigned int us)
{
    // calling avrlib's delay_us() function with low values (e.g. 1 or
    // 2 microseconds) gives delays longer than desired.
    //delay_us(us);
#if F_CPU >= 20000000L
    // for the 20 MHz clock on rare Arduino boards

    // for a one-microsecond delay, simply wait 2 cycle and return. The overhead
    // of the function call yields a delay of exactly a one microsecond.
    __asm__ __volatile__ (
        "nop" "\n\t"
        "nop"); //just waiting 2 cycle
    if (--us == 0)
        return;

    // the following loop takes a 1/5 of a microsecond (4 cycles)
    // per iteration, so execute it five times for each microsecond of
    // delay requested.
    us = (us<<2) + us; // x5 us

    // account for the time taken in the preceeding commands.
    us -= 2;

#elif F_CPU >= 16000000L
    // for the 16 MHz clock on most Arduino boards

    // for a one-microsecond delay, simply return.  the overhead
    // of the function call yields a delay of approximately 1 1/8 us.
    if (--us == 0)
        return;

    // the following loop takes a quarter of a microsecond (4 cycles)
    // per iteration, so execute it four times for each microsecond of
    // delay requested.
    us <<= 2;

    // account for the time taken in the preceeding commands.
    us -= 2;
#else
    // for the 8 MHz internal clock on the ATmega168

    // for a one- or two-microsecond delay, simply return.  the overhead of
    // the function calls takes more than two microseconds.  can't just
    // subtract two, since us is unsigned; we'd overflow.
    if (--us == 0)
        return;
    if (--us == 0)
        return;

    // the following loop takes half of a microsecond (4 cycles)
    // per iteration, so execute it twice for each microsecond of
    // delay requested.
    us <<= 1;

    // partially compensate for the time taken by the preceeding commands.
    // we can't subtract any more than this or we'd overflow w/ small delays.
    us--;
#endif

    // busy wait
    __asm__ __volatile__ (
        "1: sbiw %0,1" "\n\t" // 2 cycles
        "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
    );
}

void init()
{
    // this needs to be called before setup() or some functions won't
    // work there
    sei();

    // on the ATmega168, timer 0 is also used for fast hardware pwm
    // (using phase-correct PWM would mean that timer 0 overflowed half as often
    // resulting in different millis() behavior on the ATmega8 and ATmega168)
#if defined(TCCR0A) && defined(WGM01)
    sbi(TCCR0A, WGM01);
    sbi(TCCR0A, WGM00);
#endif

    // set timer 0 prescale factor to 64
#if defined(__AVR_ATmega128__)
    // CPU specific: different values for the ATmega128
    sbi(TCCR0, CS02);
#elif defined(TCCR0) && defined(CS01) && defined(CS00)
    // this combination is for the standard atmega8
    sbi(TCCR0, CS01);
    sbi(TCCR0, CS00);
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
    // this combination is for the standard 168/328/1280/2560
    sbi(TCCR0B, CS01);
    sbi(TCCR0B, CS00);
#elif defined(TCCR0A) && defined(CS01) && defined(CS00)
    // this combination is for the __AVR_ATmega645__ series
    sbi(TCCR0A, CS01);
    sbi(TCCR0A, CS00);
#else
    #error Timer 0 prescale factor 64 not set correctly
#endif

    // enable timer 0 overflow interrupt
#if defined(TIMSK) && defined(TOIE0)
    sbi(TIMSK, TOIE0);
#elif defined(TIMSK0) && defined(TOIE0)
    sbi(TIMSK0, TOIE0);
#else
    #error  Timer 0 overflow interrupt not set correctly
#endif

    // timers 1 and 2 are used for phase-correct hardware pwm
    // this is better for motors as it ensures an even waveform
    // note, however, that fast pwm mode can achieve a frequency of up
    // 8 MHz (with a 16 MHz clock) at 50% duty cycle

#if defined(TCCR1B) && defined(CS11) && defined(CS10)
    TCCR1B = 0;

    // set timer 1 prescale factor to 64
    sbi(TCCR1B, CS11);
#if F_CPU >= 8000000L
    sbi(TCCR1B, CS10);
#endif
#elif defined(TCCR1) && defined(CS11) && defined(CS10)
    sbi(TCCR1, CS11);
#if F_CPU >= 8000000L
    sbi(TCCR1, CS10);
#endif
#endif
    // put timer 1 in 8-bit phase correct pwm mode
#if defined(TCCR1A) && defined(WGM10)
    sbi(TCCR1A, WGM10);
#elif defined(TCCR1)
    #warning this needs to be finished
#endif

    // set timer 2 prescale factor to 64
#if defined(TCCR2) && defined(CS22)
    sbi(TCCR2, CS22);
#elif defined(TCCR2B) && defined(CS22)
    sbi(TCCR2B, CS22);
#else
    #warning Timer 2 not finished (may not be present on this CPU)
#endif

    // configure timer 2 for phase correct pwm (8-bit)
#if defined(TCCR2) && defined(WGM20)
    sbi(TCCR2, WGM20);
#elif defined(TCCR2A) && defined(WGM20)
    sbi(TCCR2A, WGM20);
#else
    #warning Timer 2 not finished (may not be present on this CPU)
#endif

#if defined(TCCR3B) && defined(CS31) && defined(WGM30)
    sbi(TCCR3B, CS31);      // set timer 3 prescale factor to 64
    sbi(TCCR3B, CS30);
    sbi(TCCR3A, WGM30);     // put timer 3 in 8-bit phase correct pwm mode
#endif

#if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
    sbi(TCCR4B, CS42);      // set timer4 prescale factor to 64
    sbi(TCCR4B, CS41);
    sbi(TCCR4B, CS40);
    sbi(TCCR4D, WGM40);     // put timer 4 in phase- and frequency-correct PWM mode
    sbi(TCCR4A, PWM4A);     // enable PWM mode for comparator OCR4A
    sbi(TCCR4C, PWM4D);     // enable PWM mode for comparator OCR4D
#else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
#if defined(TCCR4B) && defined(CS41) && defined(WGM40)
    sbi(TCCR4B, CS41);      // set timer 4 prescale factor to 64
    sbi(TCCR4B, CS40);
    sbi(TCCR4A, WGM40);     // put timer 4 in 8-bit phase correct pwm mode
#endif
#endif /* end timer4 block for ATMEGA1280/2560 and similar */

#if defined(TCCR5B) && defined(CS51) && defined(WGM50)
    sbi(TCCR5B, CS51);      // set timer 5 prescale factor to 64
    sbi(TCCR5B, CS50);
    sbi(TCCR5A, WGM50);     // put timer 5 in 8-bit phase correct pwm mode
#endif

#if defined(ADCSRA)
    // set a2d prescale factor to 128
    // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
    // XXX: this will not work properly for other clock speeds, and
    // this code should use F_CPU to determine the prescale factor.
    sbi(ADCSRA, ADPS2);
    sbi(ADCSRA, ADPS1);
    sbi(ADCSRA, ADPS0);

    // enable a2d conversions
    sbi(ADCSRA, ADEN);
#endif

    // the bootloader connects pins 0 and 1 to the USART; disconnect them
    // here so they can be used as normal digital i/o; they will be
    // reconnected in Serial.begin()
#if defined(UCSRB)
    UCSRB = 0;
#elif defined(UCSR0B)
    UCSR0B = 0;
#endif
}