315. Count of Smaller Numbers After Self - jiejackyzhang/leetcode-note GitHub Wiki
You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i] is the number of smaller elements to the right of nums[i].
Example:
Given nums = [5, 2, 6, 1]
To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.
Return the array [2, 1, 1, 0].
##Approach 1: Binary Search
- 从后至前扫描数组,并维护一个sorted数组,找出当前元素在sorted数组中的index,即为右边比它小的元素个数。 找index的过程可通过binary search完成。
time O(nlogn), space O(n)
public class Solution {
public List<Integer> countSmaller(int[] nums) {
List<Integer> res = new ArrayList<>();
List<Integer> sorted = new ArrayList<>();
if(nums == null || nums.length == 0) return res;
for(int i = nums.length-1; i >= 0; i--) {
int index = findIndex(sorted, nums[i]);
res.add(0, index);
sorted.add(index, nums[i]);
}
return res;
}
private int findIndex(List<Integer> sorted, int target) {
if(sorted.size() == 0) return 0;
int start = 0, end = sorted.size()-1;
if(sorted.get(start) >= target) return 0;
if(sorted.get(end) < target) return end+1;
while(start < end) {
int mid = start + (end - start) / 2;
if(sorted.get(mid) < target) {
start = mid + 1;
} else {
end = mid;
}
}
return start;
}
}##Approach 2: Binary Index Tree basic idea of binary index tree
public class Solution {
public List<Integer> countSmaller(int[] nums) {
List<Integer> res = new ArrayList<>();
if(nums == null || nums.length == 0) return res;
int min = Integer.MAX_VALUE;
int max = Integer.MIN_VALUE;
for(int num : nums) {
if(num < min) min = num;
}
int[] nums2 = new int[nums.length];
for(int i = 0; i < nums.length; i++) {
nums2[i] = nums[i] - min + 1;
if(nums2[i] > max) max = nums2[i];
}
int[] tree = new int[max+1];
for(int i = nums2.length-1; i >= 0; i--) {
res.add(0, get(nums2[i]-1, tree));
update(nums2[i], tree);
}
return res;
}
private int get(int i, int[] tree) {
int num = 0;
while (i > 0) {
num += tree[i];
i -= i & (-i);
}
return num;
}
private void update(int i, int[] tree) {
while (i < tree.length) {
tree[i]++;
i += i & (-i);
}
}
}