296. Best Meeting Point - jiejackyzhang/leetcode-note GitHub Wiki

A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

For example, given three people living at (0,0), (0,4), and (2,2):

1 - 0 - 0 - 0 - 1
|   |   |   |   |
0 - 0 - 0 - 0 - 0
|   |   |   |   |
0 - 0 - 1 - 0 - 0

The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.

Hint:

Try to solve it in one dimension first. How can this solution apply to the two dimension case?

很有意思的一道题目,假设二维数组中一个点到其他给定点的Manhattan Distance最小,求distance和。 因为在一维数组中这个distance最小的点就是给定所有点的median,题目又给定使用曼哈顿距离,我们就可以把二维计算分解成为两个一维的计算。

public class Solution {  
    public int minTotalDistance(int[][] grid) {  
        List<Integer> x = new ArrayList<>();  
        List<Integer> y = new ArrayList<>();  
          
        for(int i=0; i<grid.length; i++) {  
            for(int j=0; j<grid[0].length; j++) {  
                if(grid[i][j]==1) {  
                    x.add(i);  
                    y.add(j);  
                }  
            }  
        }  
          
        return getMP(x) + getMP(y);  
    }  
      
    private int getMP(List<Integer> l) {  
        Collections.sort(l);  
        int i=0, j=l.size()-1;  
        int res = 0;  
        while(i<j) {  
            res += l.get(j--) - l.get(i++);  
        }  
        return res;  
    }  
}  
⚠️ **GitHub.com Fallback** ⚠️