TrajectoryCollection - jasonxfrazier/puddy GitHub Wiki
TrajectoryCollection
TrajectoryCollection
is used to load, normalize, and group raw trajectory data in Puddy.
It supports loading from CSV, JSON, Parquet, Arrow, or in-memory DataFrames.
Initialization
from puddy import TrajectoryCollection
collection = TrajectoryCollection()
Methods
load_from_file
load_from_file(
source: Union[str, TextIO, pd.DataFrame, pa.Table],
config: Optional[ColumnConfig] = None,
min_points: int = 20
) -> None
Loads trajectory data from file or in-memory object, groups and normalizes it.
- source: Filename, file-like object, pandas DataFrame, or Arrow Table
- config:
ColumnConfig
mapping of columns to X/Y/Z and identifier - min_points: Minimum number of points required per group/trajectory
visualize_sample
visualize_sample(n: int = 5) -> None
Plots a random sample of up to n
trajectories in 3D.
If there are fewer than n
, shows all available.
Attributes
-
trajectories: List of
NormalizedTrajectory
All trajectories that have been loaded, grouped, and normalized. -
config:
ColumnConfig
or None
The column mapping and coordinate type used for this collection.
See ColumnConfig
for info on setting up coordinate/identifier mapping. See TrajectoryAnalyzer
for feature extraction and anomaly detection.