Test Automation Scope - ja-guzzle/guzzle_docs GitHub Wiki
guzzle_regression_test_suite_v0.4.xlsx
Guzzle test suit supported syntax:
Given:
Used to setup source files and database tables for a test case.
- Database:
- Supported configuration format:
- JDBC (MySQL, hive, phoenix). Hive DB is accessed via JDBC (as this step is done by Cucumber directly and not via Spark)
- Source table structure format:
- Table format
- SQL query format as "CREATE TALE xxx"
- Table data ingestion format:
- Table format
- SQL query format as " INSERT INTO... xxx"
- Supported configuration format:
- File Source:
- Supported file system and format:
- file system: LFS, HDFS, DBFS, Adls Gen2, S3
- file format: delimited, json, xml, control file, fixed file format, simple text file, excel, parquet
- Create a source file with data:
- Table structure
- raw file content given as JSON, XML, Log files etc (Yet to be built)
- Other supported options, like file path, format, delimiter, file system, header etc.
- path to an existing file which points (yet to be built) - this can be any format including excel
- Supported file system and format:
When:
Used to executed guzzle job with specified parameters.
- Run job:
- job name
- job parameters (key value format)
- Run job group:
- job group name
- job parameters (key value format)
- Initialize batch:
- batch parameters (key value format)
- Execute batch:
- batch parameters (key value format)
Then:
Used to compare job result and expected result.
- Fetch actual data:
- Database:
- Supported configuration format:
- jdbc (hive, phoenix, MySQL, SQL Server, delta)
- Fetch table data options:
- database and table name
- database and table name and filter condition
- database and select SQL query
- Supported configuration format:
- File:
- Supported file system and format:
- file system: LFS, HDFS, DBFS, Adls Gen2, S3
- file format: delimited, json, xml, control file, excel, parquet
- Fetch file data options:
- file system, file format and file path
- Supported file system and format:
- Database:
- Expected data:
- Table format
- Existing table in JDBC
- compare data:
- compare actual and expected records by specified primary key(multiple column by comma(,) separated)
- compare only specified columns