1_Probability_Theory - its1021/Mathematics-Document GitHub Wiki

1.0 Introduction

Axioms of Probability

  • $0 ≀ P(E) ≀ 1$
  • $P(S) = 1$
  • For any sequence of mutually exclusive events $𝐸_1,𝐸_2,\dots$ β†’ $𝑃(\bigcup𝐸_𝑖) = \sum𝑃(𝐸_𝑖)$

Propositions

  • $P(S) = P(E \cup E^c) = 1$
  • $E βŠ‚ F β†’ P(E) ≀ P(F)$
  • $P(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{i=1}^{n}P(E_i) + (-1)^3\sum_{i<j}P(E_iE_j) + (-1)^4\sum_{i<j<k}P(E_iE_jE_k) + \dots + (-1)^{n+1}P(E_1E_2\dots E_n)$

Conditional Probability

  • $P(E|F) = \frac{P(EF)}{P(F)} = \frac{P(EF)}{P(EF) + P(EF^c)} = \frac{P(F|E)P(E)}{P(EF) + P(EF^c)}$
  • $P(E|F) = P(E)P(F) β†’ E$ is independent of $F$

Property

  • Expectation(Mean) $E[a]=a, E[aX+bY+c] = aE[X] + bE[Y] + c$

  • Variance: Var(X)β‰₯0 $Var(a)=0, Var(aX+bY+c) = a^2Var(X) + b^2Var(Y)$ if $X$ and $Y$ are independent

  • Standard Deviation Οƒ = X-E[X]

1.1 Random Variable

Discrete RV

  • PMF(Probability Mass Function): $p(x) = P(X=x) β‰₯ 0$
    • $\sum_{x}p(x) = 1$
  • JPMF(Joint PMF): $p(x,y) = P(X=x,Y=y) β‰₯ 0$
    • $\sum_{x,y}p(x,y) = 1$
  • Marginal PMF
  • $E[g(X)] = \sum_{x:p(x)>0}g(x)p(x)$
  • $Var(X) = Οƒ^2 = E[(𝑋 - E[𝑋])^2] = E[𝑋^2] - E[𝑋]^2$
    • $Var(aX+bY+c) = a^2Var(X) + b^2Var(Y)$ if $X$ and $Y$ are independent

Continuous RV

  • PDF(Probability Density Function): $\int_a^b f(x)dx = P(a≀X≀b) = P(a<X<b), f(x) β‰₯ 0$
    • $\int_{-∞}^{∞}f(x)dx = 1$
  • JPDF
  • $E[g(X)] = \int_{-∞}^{∞}g(x)f(x)dx$
    • $E[aX+bY+c] = aE[X] + bE[Y] + c$
  • $Var(X) = Οƒ^2 = E[(𝑋 - E[𝑋])^2] = E[𝑋^2] - E[𝑋]^2$
    • $Var(aX+bY+c) = a^2Var(X) + b^2Var(Y)$ if $X$ and $Y$ are independent

1.2 Probability Distribution

Discrete Probability Distribution

Distribution Values of $x$ $p(x)$ $E[X]$ $Var(X)$
Bernoulliπ‘‹βˆΌBer($p$) Result of Bernoulli Trial$x$ = 0(failure),1(success) $\ p^x (1 - p)^{1 - x}$ $p$ $p(1 - p)$
Binomialπ‘‹βˆΌB($n,p$) Number of successes in $n$ trials$x≀n$ $\binom{n}{x} p^x (1 - p)^{n - x}$$p(k+1) = \frac{p}{1-p}\frac{n-k}{k+1}p(k)$ $np$ $np(1 - p)$
Poissonπ‘‹βˆΌPois($\lambda$) Number of arrivals$x = 0,1,2,\dots$ $\frac{e^{-\lambda} \lambda^x}{x!}$$p(k+1) = \frac{\lambda}{k+1}p(k)$ $\lambda$ $\lambda$
Geometricπ‘‹βˆΌGeo($p$) Trials to 1st success$x = 1,2,\dots$ $(1 - p)^{x - 1} p$ $\frac{1}{p}$ $\frac{1 - p}{p^2}$
Negative Binomialπ‘‹βˆΌNB($r,p$) Trials to $π‘Ÿ$-th success$x β‰₯ r$ $\binom{x - 1}{r - 1} p^r (1 - p)^{x - r}$ $\frac{r}{p}$ $\frac{r(1 - p)}{p^2}$
Hypergeometricπ‘‹βˆΌHypergeo($n,N,m$) Selection without replacement in m marked group in N samplemin(π‘₯) = max(0,π‘›βˆ’(𝑁 - π‘š))max(π‘₯) = min(𝑛,π‘š) $\frac{\binom{m}{x} \binom{N - m}{n - x}}{\binom{N}{n}}$ $\frac{nm}{N}$ $E[X][\frac{(n-1)(m-1)}{N-1}+1-E[X]]$$= \frac{nm}{N}[\frac{(n-1)(m-1)}{N-1}+1-\frac{nm}{N}]$$= \frac{nm(N - m)(N - n)}{N^2(N - 1)}$
  • $Ber(𝑝) = B(1,p)$
  • $B(𝑛,𝑝) β‰ˆ Pois(Ξ»=𝑛𝑝)$ iff $n β†’ ∞, p β†’ 0, np β†’ Ξ»$
  • $Geo(𝑝) = NB(1,p)$
  • $Hypergeo(n,N,m) β‰ˆ B(n,p)$ for success of selection m with replacement if $p= \frac{m}{n}$ , $m$ and $N$ are large in relation to $n$ and $x$

Continuous Probability Distribution

Distribution Values of $x$ $f(x)$ $E[X]$ $Var(X)$
Exponentialπ‘‹βˆΌExp($\lambda$) Time between events $\lambda e^{-\lambda x}$ $\frac{1}{\lambda}$ $\frac{1}{\lambda^2}$
Uniformπ‘‹βˆΌU($\alpha, \beta$) Outcomes with equal density in $\alpha < x < \beta$ interval $\frac{1}{\beta - \alpha}$ $\frac{\alpha + \beta}{2}$ $\frac{(\beta - \alpha)^2}{12}$
    • π‘‹βˆΌπ‘(πœ‡,𝜎2)

CDF(Cumulative Distribution Function): F(X)

JCDF(Joint CDF): F(x,y)=P(X≀x,Y≀y)

1.3 Limit Theorems

1.4 Statistical Methodology