Workflow Management and Reproducibility - iffatAGheyas/bioinformatics-tutorial-wiki GitHub Wiki
4.8 Workflow Management & Reproducibility
Complex RNA-Seq analyses involve many steps and tools. Automating and containerizing your pipeline ensures reproducibility, ease of maintenance, and portability.
4.8.1 Snakemake
- Why Snakemake?
– Python-based “Make”-style workflow engine
– Declarative rules with input/output files
– Built-in support for cluster / cloud execution
Example Snakefile
:
# Snakefile
# 1. Config
configfile: "config.yaml"
# 2. Samples
SAMPLES = config["samples"]
# 3. Rules
rule all:
input:
expand("counts/{sample}.counts.txt", sample=SAMPLES)
rule fastqc:
input:
r1="raw_data/{sample}_R1.fastq.gz",
r2="raw_data/{sample}_R2.fastq.gz"
output:
"qc/fastqc/{sample}_R1_fastqc.html",
"qc/fastqc/{sample}_R2_fastqc.html"
shell:
"fastqc -o qc/fastqc {input.r1} {input.r2}"
rule trim:
input:
r1="raw_data/{sample}_R1.fastq.gz",
r2="raw_data/{sample}_R2.fastq.gz"
output:
r1="trimmed/{sample}_R1.trimmed.fastq.gz",
r2="trimmed/{sample}_R2.trimmed.fastq.gz"
shell:
"cutadapt -q 20 -o {output.r1} -p {output.r2} {input.r1} {input.r2}"
# … additional rules for alignment, quantification, etc. …
Example config.yaml:
samples:
- SampleA
- SampleB
- SampleC
reference: "ref/genome.fa"
gtf: "ref/annotations.gtf"
-
Run the workflow:
conda activate rna_seq_env
snakemake --cores 8 --use-conda
4.8.2 Nextflow
- Why Nextflow?
- Groovy-based DSL, seamless cluster/cloud support
- Built-in Docker / Singularity integration
- Versioned pipelines via GitHub integration
Example main.nf
:
// Your Nextflow pipeline code goes here
process hello {
"""
echo 'Hello, Nextflow!'
"""
}
workflow {
hello()
}
Run the pipeline:
nextflow run main.nf -profile docker -resume -with-report report.html
4.8.3 Containerization
Encapsulate your software stack for portability:
- Docker (Linux / Mac / Windows)
# Dockerfile
FROM continuumio/miniconda3
RUN conda install -c bioconda fastqc multiqc star salmon subread snakemake nextflow
COPY . /pipeline
WORKDIR /pipeline
ENTRYPOINT ["snakemake"]
CMD ["--cores", "4"]
docker build -t rna_seq_pipeline:latest .
docker run --rm -v $PWD:/work rna_seq_pipeline:latest
- Singularity (HPC environments)
singularity build rna_seq_pipeline.sif docker://rna_seq_pipeline:latest
singularity exec rna_seq_pipeline.sif snakemake --cores 8
4.8.4 Best Practices
- Version control your workflow scripts (
Snakefile
,nextflow.config
) andenvironment.yml
orDockerfile
. - Bind your metadata (
samplesheet.tsv
,config.yaml
) to the pipeline—never hard-code sample names. - Use explicit software versions in Conda environments or containers for full reproducibility.
- Test on a small subset of data before scaling to full datasets.
- Log execution and resource usage (
snakemake --report
, Nextflow-with-trace
) for performance tuning and provenance.
With automated, containerized workflows in place, your RNA-Seq pipeline becomes modular, reproducible, and easily shareable—ideal for collaboration and production analyses.