Single Cell Omics - iffatAGheyas/bioinformatics-tutorial-wiki GitHub Wiki

6.1 Single-Cell Omics

Single-cell technologies let us profile gene expression (and other modalities) at cellular resolution. In this module we’ll cover a typical scRNA-seq workflow plus key analysis steps and tools.

What We’ll Cover

Data Types & Formats

  • 10x Genomics Chromium (Cell Ranger matrices)
  • Smart-seq2 (full-length)
  • UMI vs. non-UMI protocols

Preprocessing & QC

  • Demultiplexing & alignment (Cell Ranger, STARsolo)
  • Generating gene × cell count matrices

Quality Filtering

  • Remove low-quality cells (min genes, UMI counts)
  • Filter out genes expressed in few cells
  • Mitochondrial / ribosomal content checks

Normalization & Feature Selection

  • Library-size normalization (CPM, log1p)
  • SCTransform (Seurat) or scran’s deconvolution
  • Identify highly variable genes (HVGs)

Dimensionality Reduction & Clustering

  • PCA on HVGs
  • Neighborhood graph (k-NN)
  • UMAP / t-SNE visualization
  • Leiden / Louvain clustering

Marker Detection & Differential Expression

  • Find markers per cluster
  • Wilcoxon, MAST tests

Trajectory & Pseudotime Analysis

  • Monocle 3, Slingshot, scVelo (RNA velocity)

Multi-Omics & Batch Integration

  • CITE-seq (protein + RNA)
  • Batch correction (Harmony, Seurat IntegrateData)
  • Multi-ome integration (MOFA2, Seurat WNN)

Visualization

  • Feature plots, dot plots, heatmaps
  • Trajectory / velocity streamlines

Simulation & Benchmarking (Optional)

  • Splatter (R)
  • dyngen (Python) (Optional)
  • Splatter (R)
  • dyngen (Python)