Single Cell Omics - iffatAGheyas/bioinformatics-tutorial-wiki GitHub Wiki
6.1 Single-Cell Omics
Single-cell technologies let us profile gene expression (and other modalities) at cellular resolution. In this module we’ll cover a typical scRNA-seq workflow plus key analysis steps and tools.
What We’ll Cover
Data Types & Formats
- 10x Genomics Chromium (Cell Ranger matrices)
- Smart-seq2 (full-length)
- UMI vs. non-UMI protocols
Preprocessing & QC
- Demultiplexing & alignment (Cell Ranger, STARsolo)
- Generating gene × cell count matrices
Quality Filtering
- Remove low-quality cells (min genes, UMI counts)
- Filter out genes expressed in few cells
- Mitochondrial / ribosomal content checks
Normalization & Feature Selection
- Library-size normalization (CPM, log1p)
- SCTransform (Seurat) or scran’s deconvolution
- Identify highly variable genes (HVGs)
Dimensionality Reduction & Clustering
- PCA on HVGs
- Neighborhood graph (k-NN)
- UMAP / t-SNE visualization
- Leiden / Louvain clustering
Marker Detection & Differential Expression
- Find markers per cluster
- Wilcoxon, MAST tests
Trajectory & Pseudotime Analysis
- Monocle 3, Slingshot, scVelo (RNA velocity)
Multi-Omics & Batch Integration
- CITE-seq (protein + RNA)
- Batch correction (Harmony, Seurat IntegrateData)
- Multi-ome integration (MOFA2, Seurat WNN)
Visualization
- Feature plots, dot plots, heatmaps
- Trajectory / velocity streamlines
Simulation & Benchmarking (Optional)
- Splatter (R)
- dyngen (Python) (Optional)
- Splatter (R)
- dyngen (Python)