Home - iffatAGheyas/applied-nlp-handbook GitHub Wiki
NLP Application–Focused Syllabus
Part I: Foundations
- Module 1: Linguistic & Computational Foundations
- Module 2: Text Cleaning & Preprocessing
- Module 3: Text Representations (BoW, TF–IDF & Embeddings)
Part II: Core NLP Tasks
- Module 4: Text Classification & Sentiment Analysis
- Module 5: Named Entity Recognition & Sequence Labeling
- Module 6: Topic Modeling & Document Clustering
Part III: Generation & Summarization
- Module 7: Language Modeling & Text Generation
- Module 8: Text Summarization (Extractive & Abstractive)
- Module 9: Machine Translation & Cross-Lingual Transfer
Part IV: Information Retrieval & QA
- Module 10: Document Retrieval & Ranking
- Module 11: Question Answering & Reading Comprehension
- Module 12: Dialogue Systems & Chatbots
Part V: Evaluation, Deployment & Ethics
- Module 13: Evaluation Metrics for Generation & Classification
- Module 14: Model Serving & Production Pipelines
- Module 15: Fairness, Bias & Ethical NLP
Portfolio Projects (Optional)
- Topic Explorer: LDA + pyLDAvis dashboard
- Summarizer Demo: Extractive vs. Abstractive
- Chatbot App: Transformer-based Q&A
- Translation Tool: Fine-tune on a small bilingual corpus