Часть 6: Виртуализация в Linux. Описание основных принципов. История развития. - github2wiki/SPBSUT_KURS GitHub Wiki
Первые технологии виртуализации появились аж в 60-ых годах, однако настоящая нужда в них появилась только в 90-ых, по мере всё большего роста количества серверов. Именно тогда возникла проблема эффективной утилизации всех железок, а также оптимизации процессов обновления, развёртывания приложений, обеспечения безопасности и восстановления систем в случае какой-нибудь катастрофы.
Оставим за кадром долгую и мучительную историю развития различных технологий и методов виртуализации — для любопытного читателя в конце статьи найдутся дополнительные материалы на эту тему. Важно то, к чему в итоге всё это пришло: к трём основным подходам к виртуализации.
Подходы к виртуализации
Независимо от подхода и технологии, при использовании виртуализации всегда существует host-машина и установленный на ней гипервизор, управляющий guest-машинами.
В зависимости от используемой технологии, гипервизор может быть как отдельным ПО, устанавливаемым прямо на железо, так и частью операционной системы.
Существует три способа взаимодействия виртуальных машин с железом:
Динамическая трансляция
В этом случае виртуальные машины не имеют ни малейшего понятия, что они — виртуальные. Гипервизор перехватывает на лету все команды от виртуалки и обрабатывает их, заменяя на безопасные, а затем возвращает назад в виртуалку. Такой подход, очевидно, страдает некоторыми проблемами с производительностью, но зато позволяет виртуализировать любую ОС, так как гостевая ОС не нуждается в модификации. Динамическая трансляция используется в продуктах VMWare — лидере коммерческого ПО для виртуализации.
Паравиртуализация
Паравиртуализация (англ. Paravirtualization) — техника виртуализации, при которой гостевые операционные системы подготавливаются для исполнения в виртуализированной среде, для чего их ядро незначительно модифицируется. Операционная система взаимодействует с программой гипервизора, который предоставляет ей гостевой API, вместо использования напрямую таких ресурсов, как таблица страниц памяти, код, касающийся виртуализации, локализуется непосредственно в операционную систему. Паравиртуализация таким образом требует, чтобы гостевая операционная система была изменена для гипервизора, и это является недостатком метода, так как подобное изменение возможно лишь в случае, если гостевые ОС имеют открытые исходные коды, которые можно модифицировать согласно лицензии. Но зато паравиртуализация предлагает производительность почти как у реальной не виртуализированной системы. Как и при полной виртуализации, одновременно могут поддерживаться многочисленные различные операционные системы. Метод паравиртуализации позволяет добиться более высокой производительности, чем метод динамической трансляции.
Цель изменения интерфейса заключается в сокращении доли времени выполнения гостя, отведённого на выполнение операций, которые являются существенно более трудными для запуска в виртуальной среде по сравнению с не-виртуальной средой. Паравиртуализация предоставляет специально установленные обработчики прерываний, чтобы позволить гостю (гостям) и хосту принимать и опознавать эти задачи, которые иначе были бы выполнены в виртуальном домене (где производительность меньше). Таким образом, успешная паравиртуализированная платформа может позволить монитору виртуальных машин (VMM) быть проще (путём перевода выполнения критически важных задач, с виртуального домена к хосту домена) и/или уменьшить общие потери производительности машинного выполнения внутри виртуального гостя.
Впервые термин возник в проекте Denali, а после того, как это слово применили исследователи из компьютерной лаборатории Кембриджского университета в проекте Xen, оно окончательно утвердилось в терминологии. Приставка «пара-» в слове термине ничего не обозначает, просто авторам данной идеи понадобился новый термин.
Аппаратная виртуализация
Разработчики процессоров вовремя осознали, что архитектура x86 плохо подходит для виртуализации, так как изначально была заточена под одну ОС за раз. Поэтому, уже после того как появились динамическая трансляция от VMWare и паравиртуализация от Xen, Intel и AMD начали выпускать процессоры с аппаратной поддержкой виртуализации.
Особого прироста производительности это поначалу не дало,так как главным фокусом первых релизов было улучшение архитектуры процессоров. Однако, теперь, спустя больше 10 лет после появления Intel VT-x и AMD-V, аппаратная виртуализация ничем не уступает и даже в чём-то превосходит другие решения.
Аппаратную виртуализацию использует и требует KVM (Kernel-based Virtual Machine), которую мы и будем использовать в дальнейшем.
Kernel-based Virtual Machine
KVM — это решение для виртуализации, встроенное прямо в ядро Linux, не уступающее остальным решениям в функциональности и превосходящее их в удобстве использования. Более того, KVM — open source технология, которую, тем не менее, на всех парах двигает вперёд (как в плане написания кода, так и в плане маркетинга) и внедряет в свои продукты Red Hat.
Создатели KVM изначально сфокусировались на поддержке аппаратной виртуализации и не стали переизобретать многие вещи. Гипервизор, по сути, это маленькая операционная система, которая должна уметь работать с памятью, с сетью и т.п. Linux уже отлично умеет всё это делать, поэтому использование ядра Linux в качестве гипервизора — логичное и красивое техническое решение. Каждая виртуальная машина KVM —это всего лишь отдельный Linux процесс, безопасность обеспечивается при помощи SELinux/sVirt, ресурсы управляются при помощи CGroups.
SELinux (англ. Security-Enhanced Linux — Linux с улучшенной безопасностью) — реализация системы принудительного контроля доступа, которая может работать параллельно с классической избирательной системой контроля доступа.
CGroups (англ. Control Groups) — механизм ядра Linux, который ограничивает и изолирует вычислительные ресурсы (процессорные, сетевые, ресурсы памяти, ресурсы ввода-вывода) для групп процессов. Механизм позволяет образовывать иерархические группы процессов с заданными ресурсными свойствами и обеспечивает программное управление ими.
KVM не просто работает как часть ядра Linux: начиная с версии ядра 2.6.20 KVM является основной составляющей Linux. Иными словами, если у вас стоит Linux, то у вас уже есть KVM.
Стоит сказать, что в сфере публичных облачных платформ Xen доминирует чуть больше, чем полностью. Например, AWS EC2 и Rackspace используют именно Xen. Обусловлено это тем, что Xen появился раньше всех и первый достиг достаточного уровня производительности. Но в ноябре 2017 AWS анонсировали новый основанный на KVM гипервизор, который постепенно заменит Xen для крупнейшего облачного провайдера.
Несмотря на то, что KVM использует аппаратную виртуализацию, для некоторых драйверов I/O устройств KVM может использовать паравиртуализацию, что обеспечивает прирост производительности для определённых сценариев использования.
Далее немного о том, где ещё используется виртуализация.
Области применения виртуализации
Виртуальные машины
Виртуальная машина — это окружение, которое представляется для «гостевой» операционной системы, как аппаратное. Однако на самом деле это программное окружение, которое эмулируется программным обеспечением хостовой системы. Эта эмуляция должна быть достаточно надёжной, чтобы драйверы гостевой системы могли стабильно работать. При использовании паравиртуализации, виртуальная машина не эмулирует аппаратное обеспечение, а, вместо этого, предлагает использовать специальный API.
Виртуализация ресурсов
Виртуализация ресурсов (или разделение ресурсов, англ. partitioning) может быть представлена как разделение одного физического узла на несколько частей, каждая из которых видна для владельца в качестве отдельного сервера. Не является технологией виртуальных машин, осуществляется на уровне ядра операционной системы.
В системах с гипервизором второго типа обе операционные системы (гостевая и гипервизора) отнимают физические ресурсы, и требуют отдельного лицензирования. Виртуальные серверы, работающие на уровне ядра ОС, почти не теряют в быстродействии, что дает возможность запускать на одном физическом сервере сотни виртуальных, не требующих дополнительных лицензий.
Дисковое пространство или пропускной канал сети разделены на некоторое количество меньших составляющих, и потому легче используемых ресурсов того же типа.
Например, к реализации разделения ресурсов можно отнести OpenSolaris Network Virtualization and Resource Control (Проект Crossbow), позволяющий создавать несколько виртуальных сетевых интерфейсов на основе одного физического.
Агрегация, распределение или добавление множества ресурсов в большие ресурсы или объединение ресурсов. Например, симметричные мультипроцессорные системы объединяют множество процессоров; RAID и дисковые менеджеры объединяют множество дисков в один большой логический диск; RAID и сетевое оборудование использует множество каналов, объединённых так, чтобы они представлялись, как единый широкополосный канал. На мета-уровне компьютерные кластеры делают все вышеперечисленное. Иногда сюда же относят сетевые файловые системы абстрагированные от хранилищ данных на которых они построены, например, Vmware VMFS, Solaris/OpenSolaris ZFS, NetApp WAFL.
Виртуализация приложений
Виртуализация приложений — процесс использования приложения, преобразованного из требующего установки в операционную систему в не требующее (требуется только запустить). Для виртуализации приложений программное обеспечение виртуализатора определяет при установке виртуализуемого приложения, какие требуются компоненты ОС, и эмулирует их. Таким образом, создаётся необходимая специализированная среда для конкретно этого виртуализируемого приложения и, тем самым, обеспечивается изолированность работы этого приложения. Для создания виртуального приложения виртуализируемое помещается в контейнер, оформленный, как правило, в виде папки. При запуске виртуального приложения запускается виртуализируемое приложение и контейнер, являющийся для него рабочей средой. Рабочая среда запускается и предоставляет локальные ранее созданные ресурсы, которое включает в себя ключи реестра, файлы и другие компоненты, необходимые для запуска и работы приложения. Такая виртуальная среда работает как прослойка между приложением и операционной системой, что позволяет избежать конфликтов между приложениями. Виртуализацию приложений обеспечивают, например, программы Citrix XenApp[6], SoftGrid[7] и VMware ThinApp.