Fix documentation to point to torch.overrides instead of _overrides |
Complete |
Core dump when checking that basic CNN works (Python 3.9) high priority module: autograd module: crash module: pybind triaged |
|
Tensor-expression fuser bugfixes for 1.7.1 |
|
[v1.7.1] Various setup.py fixes |
|
[v1.7.1] Enable Python 3.9 for Windows builds |
|
[v1.7.1] Add Python 3.9 support (linux / macOS) |
|
Add max supported SM for nvrtc-11.0 |
|
[torch][te] aten::type_as is unary, not binary |
|
[pytorch][te] Handle negative axis in chunk |
|
Constructing a ParameterDict raises a warning high priority module: nn |
|
Incorrect info about overriding torch tensors in version 1.7.0 high priority |
|
torch.arange numerics are different after 1.7 update on CPU high priority |
|
[complex] torch.{sqrt, abs}: does not match numpy high priority |
|
torch/utils/collect_env.py no longer works if pytorch is not installed |
|
libtorch 1.5.0 libiomp5.dylib contains erroneous link to /DLC/torch/libiomp5.dylib instead of using @rpath |
|
max_pool1d crashes (segfault) |
|
Fix max_pool1d on discontiguous tensor |
|
torch.version.debug returns True for release builds |
|
Fix mul cuda for bool |
|
RuntimeError: "mul_cuda" not implemented for 'Bool |
|
Update pybind to 2.6.0 |
|
Fix torch.version.debug generation |
|
[quant] Quantized AdaptivePool3d is much slower for ChannelsLast3d |
|
Incorrect output loss value under specific CUDA version high priority |
|
Error out when parameters() is called on replicated models |
|
Pytorch 1.5.0 (installed from conda) errors with complaints about incompatibility between MKL and libgomp when using Pytorch's multiprocessing has workaround |
|
PyTorch 1.7.0 CUDA driver warning |
|
ProcessGroupNCCL NCCL lib version mismatch |
|
Fix incorrect signatures in get_testing_overrides for 1.7 release |
|
Fix output type of torch.max for Tensor subclasses |
|