theorems - francois-rozet/sleek-template GitHub Wiki
Theorems features of the sleek-theorems
package.
-
Renewing of
\qedsymbol
to a black square.\renewcommand{\qedsymbol}{$\blacksquare$}
-
thm
,lem
,prop
,proof
,defn
,hyp
,meth
,quest
,answ
,expl
,rmk
,note
andtip
are theorem-like environments with slightly different display styles.\begin{env}[arg*] ... \end{env}
-
framedthm
,framedlem
,framedprop
,framedprf
,frameddefn
,framedhyp
,framedmeth
,framedquest
,framedansw
andframedexpl
are framed environments with theorem titles.\begin{framedenv}[arg*] ... \end{framedenv}
They all have an unnumbered version
framedenv*
.\begin{framedenv*} ... \end{framedenv*}
arg1*
is the optional given name.
\begin{thm}[Triangle inequality]
Let be a triangle in Euclidean space. Then the sum of the lengths of two of its sides always surpass or equals the length of the third.
\end{thm}
\begin{proof}
Let $a$, $b$ and $c$ be the lengths of the sides of a triangle in Euclidean space and $\alpha$, $\beta$, $\gamma$ their respective opposite angle. By the generalized Pythagoras' theorem, we have
\begin{alignat*}{2}
& & c^2 & = a^2 + b^2 - 2ab \cos\gamma \\
& & & \leq a^2 + b^2 + 2ab \\
& & & \leq (a + b)^2 \\
\Leftrightarrow \quad & & c & \leq a + b
\end{alignat*}
Therefore in any triangle, the sum of the lengths of two sides always surpass or equals the length of the third.
\end{proof}
\begin{framedthm}[Triangle inequality]{\label{thm:Triangle inequality}}
Let be a triangle in Euclidean space. Then the sum of the lengths of two of its sides always surpass or equals the length of the third.
\end{framedthm}
\begin{framedprf}
Let $a$, $b$ and $c$ be the lengths of the sides of a triangle in Euclidean space and $\alpha$, $\beta$, $\gamma$ their respective opposite angle. By the generalized Pythagoras' theorem, we have
\begin{alignat*}{2}
& & c^2 & = a^2 + b^2 - 2ab \cos\gamma \\
& & & \leq a^2 + b^2 + 2ab \\
& & & \leq (a + b)^2 \\
\Leftrightarrow \quad & & c & \leq a + b
\end{alignat*}
Therefore in any triangle, the sum of the lengths of two sides always surpass or equals the length of the third. \qedadd
\end{framedprf}
\begin{framedquest*}
Based on the theorem \ref{thm:Triangle inequality}, what is the shortest path from a point $A$ to a point $B$ in Euclidean geometry ?
\end{framedquest*}
