VISUALIZATION - fingeredman/teanaps GitHub Wiki
TEANAPS
API Documentation
Visualization
teanaps.visualization
4. teanaps.visualization.GraphVisualizer
4.1. Python Code (in Jupyter Notebook) :
from teanaps.visualization import GraphVisualizer gv = GraphVisualizer()
-
teanaps.visualization.GraphVisualizer.draw_histogram(data_meta_list, graph_meta)
Top(https://github.com/fingeredman/teanaps/wiki/VISUALIZATION#teanaps-api-documentation)-
μ λ ₯λ κ·Έλν λ©νμ 보λ₯Ό λ°νμΌλ‘ μμ±λ νμ€ν κ·Έλ¨ κ·Έλνλ₯Ό μΆλ ₯ν©λλ€.
-
Parameters
- data_meta_list (list) : κ·Έλνμ ννν λ°μ΄ν° λμ λ리λ₯Ό ν¬ν¨νλ 리μ€νΈ. Examples μ°Έκ³ .
- graph_meta (dict) : κ·Έλν μμ±μ μ μν λμ λ리. Examples μ°Έκ³ .
-
Returns
- plotly graph (graph object) : νμ€ν κ·Έλ¨ κ·Έλν.
-
Examples
Python Code (in Jupyter Notebook) :
x = ["a", "b", "c", "d", "e", "f"] y = [1, 2, 3, 4, 5, 6] z = [4, 6, 3, 4, 2, 9] data_meta_list = [] data_meta = { "graph_type": "histogram", "data_name": "Y", "x_data": x, "y_data": y, "y_axis": "y1", } data_meta_list.append(data_meta) data_meta = { "graph_type": "histogram", "data_name": "Z", "x_data": x, "y_data": z, "y_axis": "y1" } data_meta_list.append(data_meta) graph_meta = { "title": "HISTOGRAM", "x_tickangle": 0, "y1_tickangle": 0, "y2_tickangle": 0, "x_name": "X", "y1_name": "Y1", "y2_name": "Y2", } gv.draw_histogram(data_meta_list, graph_meta)
Output (in Jupyter Notebook) :
-
-
teanaps.visualization.GraphVisualizer.draw_line_graph(data_meta_list, graph_meta)
Top(https://github.com/fingeredman/teanaps/wiki/VISUALIZATION#teanaps-api-documentation)-
μ λ ₯λ κ·Έλν λ©νμ 보λ₯Ό λ°νμΌλ‘ μμ±λ λΌμΈ κ·Έλνλ₯Ό μΆλ ₯ν©λλ€.
-
Parameters
- data_meta_list (list) : κ·Έλνμ ννν λ°μ΄ν° λμ λ리λ₯Ό ν¬ν¨νλ 리μ€νΈ. Examples μ°Έκ³ .
- graph_meta (dict) : κ·Έλν μμ±μ μ μν λμ λ리. Examples μ°Έκ³ .
-
Returns
- plotly graph (graph object) : λΌμΈ κ·Έλν.
-
Examples
Python Code (in Jupyter Notebook) :
x = ["a", "b", "c", "d", "e", "f"] y = [1, 2, 3, 4, 5, 6] z = [4, 6, 3, 4, 2, 9] data_meta_list = [] data_meta = { "data_name": "Y", "x_data": x, "y_data": y, "y_axis": "y1", } data_meta_list.append(data_meta) data_meta = { "data_name": "Z", "x_data": x, "y_data": z, "y_axis": "y2" } data_meta_list.append(data_meta) graph_meta = { "title": "LINE GRAPH", "x_tickangle": 0, "y1_tickangle": 0, "y2_tickangle": 0, "x_name": "X", "y1_name": "Y1", "y2_name": "Y2", } gv.draw_line_graph(data_meta_list, graph_meta)
Output (in Jupyter Notebook) :
-
-
teanaps.visualization.GraphVisualizer.draw_matrix(data_meta_list, graph_meta)
Top(https://github.com/fingeredman/teanaps/wiki/VISUALIZATION#teanaps-api-documentation)-
μ λ ₯λ κ·Έλν λ©νμ 보λ₯Ό λ°νμΌλ‘ μμ±λ λ§€νΈλ¦μ€ κ·Έλνλ₯Ό μΆλ ₯ν©λλ€.
-
Parameters
- data_meta (dict) : κ·Έλνμ ννν λ°μ΄ν° λμ λ리. Examples μ°Έκ³ .
- graph_meta (dict) : κ·Έλν μμ±μ μ μν λμ λ리. Examples μ°Έκ³ .
-
Returns
- plotly graph (graph object) : λ§€νΈλ¦μ€ κ·Έλν.
-
Examples
Python Code (in Jupyter Notebook) :
x = ["A", "B", "C", "D", "E", "F"] y = ["AA", "BB", "CC", "DD", "EE", "FF"] x_data = [] y_data = [] z_data = [] for x_index in range(len(x)): for y_index in range(len(y)): x_data.append(x[x_index]) y_data.append(y[y_index]) z_data.append(x_index/2 + y_index) data_meta = { "colorbar_title": "Z RANGE", "x_data": x_data, "y_data": y_data, "z_data": z_data } graph_meta = { "title": "MATRIX", "height": 1000, "width": 1000, "y_tickangle": 0, "y_name": "Y", "x_tickangle": 0, "x_name": "X", } gv.draw_matrix(data_meta, graph_meta)
Output (in Jupyter Notebook) :
-
-
teanaps.visualization.GraphVisualizer.draw_scatter(data_meta_list, graph_meta)
Top(https://github.com/fingeredman/teanaps/wiki/VISUALIZATION#teanaps-api-documentation)-
μ λ ₯λ κ·Έλν λ©νμ 보λ₯Ό λ°νμΌλ‘ μμ±λ μ°μ λ κ·Έλνλ₯Ό μΆλ ₯ν©λλ€.
-
Parameters
- data_meta_list (list) : κ·Έλνμ ννν λ°μ΄ν° λμ λ리λ₯Ό ν¬ν¨νλ 리μ€νΈ. Examples μ°Έκ³ .
- graph_meta (dict) : κ·Έλν μμ±μ μ μν λμ λ리. Examples μ°Έκ³ .
-
Returns
- plotly graph (graph object) : μ°μ λ κ·Έλν.
-
Examples
Python Code (in Jupyter Notebook) :
x1 = [1, 2, 3, 4, -5, 6] y1 = [-4, 6, 3, 4, 2, 9] label1 = ["a", "b", "c", "d", "e", "f"] x2 = [6, 7, 2, -4, 5, 2] y2 = [1, 3, 5, 2, -7, 9] label2 = ["A", "B", "C", "D", "E", "F"] data_meta_list = [] data_meta = { "data_name": "COORDINATES1", "x_data": x1, "y_data": y1, "label": label1 } data_meta_list.append(data_meta) data_meta = { "data_name": "COORDINATES2", "x_data": x2, "y_data": y2, "label": label2 } data_meta_list.append(data_meta) graph_meta = { "title": "SCATTER", "x_name": "X", "y_name": "Y" } gv.draw_scatter(data_meta_list, graph_meta)
Output (in Jupyter Notebook) :
-
-
teanaps.visualization.GraphVisualizer.draw_radar(data_meta, graph_meta)
Top(https://github.com/fingeredman/teanaps/wiki/VISUALIZATION#teanaps-api-documentation)-
μ λ ₯λ κ·Έλν λ©νμ 보λ₯Ό λ°νμΌλ‘ μμ±λ λ μ΄λ€ κ·Έλνλ₯Ό μΆλ ₯ν©λλ€.
-
Parameters
- data_meta (dict) : κ·Έλνμ ννν λ°μ΄ν° λμ λ리. Examples μ°Έκ³ .
- graph_meta (dict) : κ·Έλν μμ±μ μ μν λμ λ리. Examples μ°Έκ³ .
-
Returns
- plotly graph (graph object) : λ μ΄λ€ κ·Έλν.
-
Examples
Python Code (in Jupyter Notebook) :
x = ["a", "b", "c", "d", "e", "f"] r = [1, 2, 3, 4, 5, 6] data_meta = { 'label': x, 'r': r, } graph_meta = { "title": "RADAR GRAPH", "axis": True, } gv.draw_radar(data_meta, graph_meta)
Output (in Jupyter Notebook) :
-
teanaps.visualization.TextVisualizer
4.2. Python Code (in Jupyter Notebook) :
from teanaps.visualization import TextVisualizer tv = TextVisualizer()
-
teanaps.visualization.Textvisualizer.draw_sentence_attention(token_list, weight_list)
Top(https://github.com/fingeredman/teanaps/wiki/VISUALIZATION#teanaps-api-documentation)-
ννμ λ¨μλ‘ λΆλ¦¬λ λ¬Έμ₯κ³Ό κ° ννμλ³ κ°μ€μΉλ₯Ό λ°νμΌλ‘ λ¬Έμ₯μ νΉμ λΆλΆμ νμ΄λΌμ΄νΈν ννμ λ¬Έμ₯ κ·Έλνλ‘ μΆλ ₯ν©λλ€.
-
Parameters
- token_list (list) : ννμ λ¨μλ‘ λΆλ¦¬λ λ¬Έμ₯μ κ° ννμλ₯Ό ν¬ν¨νλ 리μ€νΈ.
- weight_list (list) : ννμ λ¨μλ‘ λΆλ¦¬λ λ¬Έμ₯μ κ° ννμμ ν΄λΉνλ κ°μ€μΉλ₯Ό ν¬ν¨νλ 리μ€νΈ.
-
Returns
- plotly graph (graph object) : λ¬Έμ₯ κ·Έλν.
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "λ¬Έμ₯μμ μ€μν λΆλΆμ μμμΌλ‘ κ°μ‘°νμ¬ νννκΈ° μν΄ μ¬μ©λ©λλ€." token_list = sentence.split(" ") #token_list = ['λ¬Έμ₯μμ', 'μ€μν', 'λΆλΆμ', "μμμΌλ‘", 'κ°μ‘°νμ¬', 'νννκΈ°', 'μν΄', 'μ¬μ©λ©λλ€.'] weight_list = [1, 5, 2, 1, 4, 2, 1, 1] tv.draw_sentence_attention(token_list, weight_list)
Output (in Jupyter Notebook) :
Python Code (in Jupyter Notebook) :
sentence = "κ°μ€μΉκ° μμλ©΄ νλμ, μμλ©΄ λΉ¨κ°μμΌλ‘ μμμ ννν©λλ€." token_list = sentence.split(" ") #token_list = ['κ°μ€μΉκ°', 'μμλ©΄', 'νλμ,', "μμλ©΄", 'λΉ¨κ°μμΌλ‘', 'ννν©λλ€.'] weight_list = [0, 2, 5, -1, -4, 0, 0, 0] tv.draw_sentence_attention(token_list, weight_list)
Output (in Jupyter Notebook) :
-
-
teanaps.visualization.Textvisualizer.draw_wordcloud(data_meta, graph_meta)
Top(https://github.com/fingeredman/teanaps/wiki/VISUALIZATION#teanaps-api-documentation)-
λ¨μ΄μ κ·Έ κ°μ€μΉλ₯Ό λ°νμΌλ‘ μμ±λ μλν΄λΌμ°λ μ΄λ―Έμ§λ₯Ό μΆλ ₯ν©λλ€.
-
graph_meta
μmask_path
μ μ΄λ―Έμ§ κ²½λ‘λ₯Ό μΆκ°νλ©΄ μνλ λͺ¨μ/μμμ μλν΄λΌμ°λλ₯Ό μμ±ν μ μμ΅λλ€. -
Parameters
- data_meta (dict) : κ·Έλνμ ννν λ°μ΄ν° λμ λ리. Examples μ°Έκ³ .
- graph_meta (dict) : κ·Έλν μμ±μ μ μν λμ λ리. Examples μ°Έκ³ .
-
Returns
- figure (matplotlib.pyplot.plt) : μλν΄λ¦¬μ°λ.
-
Examples
Python Code (in Jupyter Notebook) :
tf = { "TEANAPS": 10, "teanaps.com": 4, "fingeredman": 2, "ν μ€νΈλ§μ΄λ": 3, "μμ°μ΄μ²λ¦¬": 4, "κ°μ±λΆμ": 1, "λ¨μ΄λΉλ": 1, "TFIDF": 1, "μμ½": 1, "λ¨μ΄λ€νΈμν¬": 1, "ννμλΆμ": 1, "κ°μ²΄λͺ μΈμ": 1, "ꡬ문λΆμ": 1 } data_meta = { "weight_dict": tf, } graph_meta = { "height": 1000, "width": 1000, "min_font_size": 10, "max_font_size": 500, "margin": 10, "background_color": "white", "mask_path": None } tv.draw_wordcloud(data_meta, graph_meta)
Output (in Jupyter Notebook) :
-
-
teanaps.visualization.Textvisualizer.draw_network(data_meta, graph_meta, mode="text+markers", centrality_th=0.5, ego_node_list=[], node_size_rate=10, edge_width_rate=10, text_size_rate=10)
Top(https://github.com/fingeredman/teanaps/wiki/VISUALIZATION#teanaps-api-documentation)-
λ¨μ΄μ κ·Έ κ°μ€μΉ, κ·Έλ¦¬κ³ μμμμ λ°νμΌλ‘ μμ±λ λ€νΈμν¬ μ΄λ―Έμ§λ₯Ό μΆλ ₯ν©λλ€.
-
Parameters
- data_meta (dict) : κ·Έλνμ ννν λ°μ΄ν° λμ λ리. Examples μ°Έκ³ .
- graph_meta (dict) : κ·Έλν μμ±μ μ μν λμ λ리. Examples μ°Έκ³ .
- mode (str) : κ·Έλνμμ λ Έλλ₯Ό νννλ μ΅μ , {"text+markers", "markers", "text"} μ€ νλ μ λ ₯. Examples μ°Έκ³ .
- centrality_th (float) : λ Έλ νν°λ§ κΈ°μ€ μ€μ¬μ± μμΉ. μ λ ₯ν κ° μ΄μμ μ€μ¬μ±μ κ°μ§ λ Έλλ§ κ·Έλνμ ννλ¨.
- ego_node_list (list) : μκ³ λ€νΈμν¬λ₯Ό μμ±ν μ€μ¬λ Έλ 리μ€νΈ. μ λ ₯λ λ Έλμ μ§μ μ°κ²°λ λ Έλλ§ κ·Έλνμ ννλ¨.
- node_size_rate (int) : λ Έλ μ¬μ΄μ¦ νν κ°μ€μΉ. μμΉκ° λμμλ‘ λ Έλμ ν¬κΈ°κ° ν¬κ² ννλ¨.
- edge_width_rate (int) : μ£μ§ λκ» νν κ°μ€μΉ. μμΉκ° λμμλ‘ μ£μ§μ λκ»κ° κ°λκ² ννλ¨.
- text_size_rate (int) : ν μ€νΈ λ μ΄λΈ ν¬κΈ° νν κ°μ€μΉ. μμΉκ° λμμλ‘ ν μ€νΈ λ μ΄λΈ ν¬κΈ°κ° μκ² ννλ¨.
-
Returns
- plotly graph (graph object) : λ€νΈμν¬ κ·Έλν.
-
Examples
Python Code (in Jupyter Notebook) :
data_meta = { "node_list": ["a", "b", "c", "d", "e", "f"], "edge_list": [("a", "b", 1), ("c", "d", 10), ("a", "c", 15), ("b", "d", 1), ("a", "f", 20), ("a", "e", 5), ("e", "d", 1), ("d", "f", 5)], "weight_dict": { "a": 4, "b": 2, "c": 2, "d": 3, "e": 2, "f": 2 } } graph_meta = { "title": "WORD NETWORK", "height": 1000, "width": 1000, "weight_name": "Weight", } tv.draw_network(data_meta, graph_meta, mode="text+markers", node_size_rate=7, edge_width_rate=5)
Output (in Jupyter Notebook) :
-