NLP - fingeredman/teanaps GitHub Wiki
Python Code (in Jupyter Notebook) :
from teanaps.nlp import MorphologicalAnalyzer ma = MorphologicalAnalyzer()
Notes :
- importμ μ΅μ΄ 1ν κ²½κ³ λ©μμ§ (Warnning)κ° μΆλ ₯λ μ μμ΅λλ€. 무μνμ λ μ’μ΅λλ€.
-
teanaps.nlp.MorphologicalAnalyzer.parse(sentence)
[Top]-
λ¬Έμ₯μ ννμ λΆμνκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
-
Returns
- result (list) : (ννμ, νμ¬, λ¨μ΄μμΉ) ꡬ쑰μ Tupleμ ν¬ν¨νλ 리μ€νΈ.
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python λΌμ΄λΈλ¬λ¦¬ μ λλ€." result = ma.parse(sentence) print(result)
Output (in Jupyter Notebook) :
[('TEANAPS', 'OL', (0, 7)), ('λ', 'VV', (7, 8)), ('ν μ€νΈ', 'NNG', (9, 12)), ('λ§', 'NNG', (13, 14)), ('μ΄λ', 'NNG', (14, 16)), ('μ', 'JC', (16, 17)), ('μ', 'NNG', (18, 19)), ('ν', 'JC', (19, 20)), ('Python', 'OL', (21, 27)), ('λΌμ΄λΈλ¬λ¦¬', 'NNG', (28, 33)), ('μ λλ€', 'VA', (34, 37)), ('.', 'SW', (37, 38))]
Notes :
-
TEANAPS
ννμλΆμκΈ°μ νμ¬νκ·Έλ μΈμ’ λ§λμΉ νμ¬νκ·Έλ₯Ό κΈ°λ³ΈμΌλ‘ μ¬μ©ν©λλ€. νμ¬νκ·Ένλ Appendixλ₯Ό μ°Έκ³ ν΄μ£ΌμΈμ. -
TEANAPS
ννμλΆμκΈ° μ±λ₯μ μ νν μ€νμμ€ ννμλΆμκΈ°μ λμΌν©λλ€. -
TEANAPS
κ°μ²΄λͺ μΈμκΈ°μ ꡬ문λΆμκΈ°λ₯Ό νμ©νλ©΄ λ λμ μ νλλ‘ ννμλΆμμ μνν μ μμ΅λλ€. (μ±λ₯νκ° κ²°κ³Ό μ΄ν΄λ³΄κΈ°)
-
-
-
teanaps.nlp.MorphologicalAnalyzer.set_tagger(tagger)
[Top]-
ννμ λΆμκΈ°λ₯Ό μ νν©λλ€. ννμ λΆμκΈ°λ
MeCab
,Okt (Twitter)
,Kkma
,NLTK
μ΄ 4κ°μ§λ₯Ό μ§μν©λλ€. ννμ λΆμκΈ°λ₯Ό μ ννμ§ μμΌλ©΄ κΈ°λ³ΈμΌλ‘ νκ΅μ΄λOKt
, μμ΄λNLTK
ννμ λΆμκΈ°λ₯Ό μ¬μ©ν©λλ€. -
Parameters
- tagger (str) : ννμ λΆμκΈ° {"okt", "mecab", "kkma"} μ€ νλ μ λ ₯.
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
ma.set_tagger("okt") # or ma.set_tagger("mecab") # or ma.set_tagger("kkma") sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python λΌμ΄λΈλ¬λ¦¬ μ λλ€." result = ma.parse(sentence) print(result)
Output (in Jupyter Notebook) :
[('TEANAPS', 'OL', (0, 7)), ('λ', 'VV', (7, 8)), ('ν μ€νΈ', 'NNG', (9, 12)), ('λ§', 'NNG', (13, 14)), ('μ΄λ', 'NNG', (14, 16)), ('μ', 'JC', (16, 17)), ('μ', 'NNG', (18, 19)), ('ν', 'JC', (19, 20)), ('Python', 'OL', (21, 27)), ('λΌμ΄λΈλ¬λ¦¬', 'NNG', (28, 33)), ('μ λλ€', 'VA', (34, 37)), ('.', 'SW', (37, 38))]
-
Python Code (in Jupyter Notebook) :
from teanaps.nlp import NamedEntityRecognizer ner = NamedEntityRecognizer(model_path="/model")
Notes :
- λͺ¨λΈ νμΌμ λ³λλ‘ λ€μ΄λ‘λνμ¬ νμΌ κ²½λ‘λ₯Ό
model_path
λ³μμ ν¬ν¨ν΄μΌν©λλ€.- importμ μ΅μ΄ 1ν κ²½κ³ λ©μμ§ (Warnning)κ° μΆλ ₯λ μ μμ΅λλ€. 무μνμ λ μ’μ΅λλ€.
-
teanaps.nlp.NamedEntityRecognizer.parse(sentence)
[Top]-
λ¬Έμ₯μμ κ°μ²΄λͺ μ μΈμνκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
-
Returns
- result (list) : (κ°μ²΄λͺ , κ°μ²΄λͺ νκ·Έ, κ°μ²΄λͺ μμΉ) ꡬ쑰μ Tupleμ ν¬ν¨νλ 리μ€νΈ.
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§ μ λλ€." result = ner.parse(sentence) print(result)
Output (in Jupyter Notebook) :
[('TEANAPS', 'UN', (0, 7)), ('Python', 'UN', (21, 27))]
Notes :
-
TEANAPS
κ°μ²΄λͺ μΈμκΈ°μ κ°μ²΄λͺ νκ·Έλ μ΄ 16μ’ μΌλ‘ ꡬλΆλ©λλ€. νκ·Έ μ’ λ₯ λ° κ΅¬λΆμ μ 보ν΅μ λ¨μ²΄νμ€ (TTAS)μ λ°λ¦ λλ€. - κ°μ²΄λͺ νκ·Ένλ Appendixλ₯Ό μ°Έκ³ ν΄μ£ΌμΈμ.
-
TEANAPS
κ°μ²΄λͺ μΈμκΈ°μ μ±λ₯ λ° νΉμ§μ μ±λ₯νκ° κ²°κ³Όλ₯Ό μ°Έκ³ ν΄μ£ΌμΈμ.
-
-
-
teanaps.nlp.NamedEntityRecognizer.parse_sentence(sentence)
[Top]-
λ¬Έμ₯μμ κ°μ²΄λͺ μ μΈμνκ³ κ·Έ κ²°κ³Όλ₯Ό λ¬Έμ₯ ννλ‘ λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
-
Returns
- result (str) : νμ€ κ°μ²΄λͺ νκ·Έ νμμΌλ‘ κ°μ²΄λͺ νκΉ λ λ¬Έμ₯.
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§ μ λλ€." result = ner.parse_sentence(sentence) print(result)
Output (in Jupyter Notebook) :
"<TEANAPS:UN>λ ν μ€νΈ λ§μ΄λμ μν <Python:UN> ν¨ν€μ§ μ λλ€."
-
-
teanaps.nlp.NamedEntityRecognizer.get_weight(sentence)
[Top]-
λ¬Έμ₯μμ κ°μ²΄λͺ μ μΈμνκ³ κ° ννμλ³ κ°μ€μΉλ₯Ό λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
-
Returns
- result (str) : token_list, weight_listκ° ν¬ν¨λ νν.
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§ μ λλ€." token_list, weight_list = ner.get_weight(sentence) print(token_list) print(weight_list)
Output (in Jupyter Notebook) :
[' T', 'E', 'A', 'NA', 'PS', 'λ', ' ', 'ν ', 'μ€νΈ', ' λ§', 'μ΄λ', 'μ', ' μν', ' P', 'y', 'th', 'on', ' ν¨ν€μ§', ' ', 'μ λλ€', '.'] [0.41024893522262573, 0.08311055600643158, 0.1084287092089653, 0.1453726887702942, 0.25153452157974243, 0.004453524947166443, 0.0038948641158640385, 0.0018726392881944776, 0.0029991772025823593, 0.0017985135782510042, 0.001928122597746551, 0.0021339845843613148, 0.0020090234465897083, 0.14324823021888733, 0.20584315061569214, 0.11403589695692062, 0.14470143616199493, 0.09357250481843948, 0.0024957722052931786, 0.0019250106997787952, 0.004643643740564585]
-
-
teanaps.nlp.NamedEntityRecognizer.draw_sentence_weight(sentence)
[Top]-
λ¬Έμ₯μμ κ°μ²΄λ‘ μΈμλ ννμμ λν κ°μ€μΉλ₯Ό text attention κ·Έλνλ‘ μΆλ ₯ν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
-
Returns
- plotly graph (graph object) : λ¬Έμ₯μμ κ°μ²΄λ‘ μΈμλ λΆλΆμ λν κ°μ€μΉ κ·Έλν.
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§ μ λλ€." ner.draw_sentence_weight(sentence)
Output (in Jupyter Notebook) :
-
-
teanaps.nlp.NamedEntityRecognizer.draw_weight(sentence)
[Top]-
λ¬Έμ₯μμ κ°μ²΄λ‘ μΈμλ ννμμ λν κ°μ€μΉλ₯Ό νμ€ν κ·Έλ¨μΌλ‘ μΆλ ₯ν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
-
Returns
- plotly graph (graph object) : λ¬Έμ₯μμ κ°μ²΄λ‘ μΈμλ λΆλΆμ λν κ°μ€μΉ κ·Έλν.
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§ μ λλ€." ner.draw_weight(sentence)
Output (in Jupyter Notebook) :
-
Python Code (in Jupyter Notebook) :
from teanaps.nlp import SyntaxAnalyzer sa = SyntaxAnalyzer()
Notes :
- importμ μ΅μ΄ 1ν κ²½κ³ λ©μμ§ (Warnning)κ° μΆλ ₯λ μ μμ΅λλ€. 무μνμ λ μ’μ΅λλ€.
-
teanaps.nlp.SyntaxAnalyzer.parse(ma_result, ner_result)
[Top]-
ννμ λΆμκ³Ό κ°μ²΄λͺ μΈμ κ²°κ³Όλ₯Ό λ°νμΌλ‘ λ¬Έμ₯ ꡬ쑰λ₯Ό νμ νκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- ma_result (list) : (ννμ, νμ¬, λ¨μ΄μμΉ) ꡬ쑰μ Tupleμ ν¬ν¨νλ 리μ€νΈ.
teanaps.nlp.ma.parse
μ°Έκ³ . - ner_result (list) : (κ°μ²΄λͺ
, κ°μ²΄λͺ
νκ·Έ, κ°μ²΄λͺ
μμΉ) ꡬ쑰μ Tupleμ ν¬ν¨νλ 리μ€νΈ.
teanaps.nlp.ner.parse
μ°Έκ³ .
- ma_result (list) : (ννμ, νμ¬, λ¨μ΄μμΉ) ꡬ쑰μ Tupleμ ν¬ν¨νλ 리μ€νΈ.
-
Returns
- result (list) : (ννμ, ννμ νκ·Έ, κ°μ²΄λͺ νκ·Έ, κ°μ²΄λͺ μμΉ) ꡬ쑰μ Tupleμ ν¬ν¨νλ 리μ€νΈ.
-
Examples
Python Code (in Jupyter Notebook) :
#sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§ μ λλ€." #ma_result = [('TEANAPS', 'OL', (0, 7)), ('λ', 'JX', (7, 8)), ('ν μ€νΈ', 'NNG', (9, 12)), ('λ§μ΄λ', 'NNP', (13, 16)), ('μ', 'JKO', (16, 17)), ('μν', 'VV+ETM', (18, 20)), ('Python', 'OL', (21, 27)), ('ν¨ν€μ§', 'NNG', (28, 31)), ('μ λλ€', 'VCP+EF', (32, 35)), ('.', 'SW', (35, 36))] #ner_result = [('TEANAPS', 'UN', (0, 7)), ('Python', 'UN', (21, 27))] result = sa.parse(ma_result, ner_result) print(result)
Output (in Jupyter Notebook) :
[('TEANAPS', 'NNP', 'UN', (0, 7)), ('λ', 'JX', 'UN', (7, 8)), ('ν μ€νΈ', 'NNG', 'UN', (9, 12)), ('λ§μ΄λ', 'NNP', 'UN', (13, 16)), ('μ', 'JKO', 'UN', (16, 17)), ('μν', 'VV+ETM', 'UN', (18, 20)), ('Python', 'NNP', 'UN', (21, 27)), ('ν¨ν€μ§', 'NNG', 'UN', (28, 31)), ('μ λλ€', 'VCP+EF', 'UN', (32, 35)), ('.', 'SW', 'UN', (35, 36))]
-
-
teanaps.nlp.SyntaxAnalyzer.get_phrase(sentence, sa_result)
[Top]-
λ¬Έμ₯μ ꡬ쑰λ₯Ό νμ νκ³ μ΄μ λ¨μλ‘ λλ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
-
Returns
- phrase_sa_list (list) : (ννμ, ννμ νκ·Έ, κ°μ²΄λͺ νκ·Έ, κ°μ²΄λͺ μμΉ) ꡬ쑰μ ννμλ₯Ό μ΄κ΅¬, μ΄μ λ¨μλ‘ λ¬Άμ΄ ννλ 리μ€νΈ.
- phrase_list (list) : λΆλ¦¬λ μ΄μ λ¨μλ₯Ό ν¬ν¨νλ 리μ€νΈ.
-
Examples
Python Code (in Jupyter Notebook) :
#sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§ μ λλ€." #sa_result = [('TEANAPS', 'NNP', 'UN', (0, 7)), ('λ', 'JX', 'UN', (7, 8)), ('ν μ€νΈ', 'NNG', 'UN', (9, 12)), ('λ§μ΄λ', 'NNP', 'UN', (13, 16)), ('μ', 'JKO', 'UN', (16, 17)), ('μν', 'VV+ETM', 'UN', (18, 20)), ('Python', 'NNP', 'UN', (21, 27)), ('ν¨ν€μ§', 'NNG', 'UN', (28, 31)), ('μ λλ€', 'VCP+EF', 'UN', (32, 35)), ('.', 'SW', 'UN', (35, 36))] phrase_sa_list, phrase_list = sa.get_phrase(sentence, sa_result) print(phrase_sa_list) print(phrase_list)
Output (in Jupyter Notebook) :
[[[('TEANAPS', 'NNP', 'UN', (0, 7))], [('λ', 'JX', 'UN', (7, 8))]], [[('ν μ€νΈ', 'NNG', 'UN', (9, 12)), ('λ§μ΄λ', 'NNP', 'UN', (13, 16))], [('μ', 'JKO', 'UN', (16, 17))]], [[('μν', 'VV+ETM', 'UN', (18, 20))], [('Python', 'NNP', 'UN', (21, 27)), ('ν¨ν€μ§', 'NNG', 'UN', (28, 31))], [('μ λλ€', 'VCP+EF', 'UN', (32, 35)), ('.', 'SW', 'UN', (35, 36))]]] ['TEANAPSλ', 'ν μ€νΈ λ§μ΄λμ', 'μν Python ν¨ν€μ§ μ λλ€.']
-
-
teanaps.nlp.SyntaxAnalyzer.get_sentence_tree(sentence, sa_result)
[Top]-
ννμ λΆμκ³Ό κ°μ²΄λͺ μΈμ κ²°κ³Όλ₯Ό λ°νμΌλ‘ λ¬Έμ₯ ꡬ쑰λ₯Ό νΈλ¦¬ κ΅¬μ‘°λ‘ μμ±νκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
- sa_result (list) : (ννμ, κ°μ²΄λͺ
, κ°μ²΄λͺ
νκ·Έ, κ°μ²΄λͺ
μμΉ) ꡬ쑰μ Tupleμ ν¬ν¨νλ 리μ€νΈ.
teanaps.nlp.sa.parse
μ°Έκ³ .
-
Returns
- label_list (list) : νΈλ¦¬κ΅¬μ‘° λ¬Έμ₯μ κ° μΈλ±μ€μ ν΄λΉνλ λΌλ²¨μ ν¬ν¨νλ 리μ€νΈ.
- edge_list (list) : νΈλ¦¬κ΅¬μ‘° λ¬Έμ₯μ κ° λΌλ²¨ μΈλ±μ€ κ°μ μ°κ²°λ μ£μ§λ₯Ό ν¬ν¨νλ 리μ€νΈ.
-
Examples
Python Code (in Jupyter Notebook) :
#sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§ μ λλ€." #sa_result = [('TEANAPS', 'NNP', 'UN', (0, 7)), ('λ', 'JX', 'UN', (7, 8)), ('ν μ€νΈ', 'NNG', 'UN', (9, 12)), ('λ§μ΄λ', 'NNP', 'UN', (13, 16)), ('μ', 'JKO', 'UN', (16, 17)), ('μν', 'VV+ETM', 'UN', (18, 20)), ('Python', 'NNP', 'UN', (21, 27)), ('ν¨ν€μ§', 'NNG', 'UN', (28, 31)), ('μ λλ€', 'VCP+EF', 'UN', (32, 35)), ('.', 'SW', 'UN', (35, 36))] label_list, edge_list = sa.get_sentence_tree(sentence, sa_result) print(label_list) print(edge_list)
Output (in Jupyter Notebook) :
['TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§ μ λλ€.<br>/SENTENCE', 'TEANAPSλ<br>/SUBJECT', 'ν μ€νΈ λ§μ΄λμ<br>/OBJECT', 'μν Python ν¨ν€μ§ μ λλ€.<br>/EF', 'TEANAPS<br>/N', 'λ<br>/J', 'ν μ€νΈ λ§μ΄λ<br>/N', 'μ<br>/J', 'μν<br>/V', 'Python ν¨ν€μ§<br>/N', 'μ λλ€.<br>/S', 'TEANAPS<br>/NNP<br>/UN', 'λ<br>/JX<br>/UN', 'ν μ€νΈ<br>/NNG<br>/UN', 'λ§μ΄λ<br>/NNP<br>/UN', 'μ<br>/JKO<br>/UN', 'μν<br>/VV+ETM<br>/UN', 'Python<br>/NNP<br>/UN', 'ν¨ν€μ§<br>/NNG<br>/UN', 'μ λλ€<br>/VCP+EF<br>/UN', '.<br>/SW<br>/UN'] [(0, 1), (1, 4), (4, 11), (1, 5), (5, 12), (0, 2), (2, 6), (6, 13), (6, 14), (2, 7), (7, 15), (0, 3), (3, 8), (8, 16), (3, 9), (9, 17), (9, 18), (3, 10), (10, 19), (10, 20)]
-
-
teanaps.nlp.SyntaxAnalyzer.draw_sentence_tree(sentence, label_list, edge_list)
[Top]-
ννμ λΆμκ³Ό κ°μ²΄λͺ μΈμ κ²°κ³Όλ₯Ό λ°νμΌλ‘ μμ±λ νΈλ¦¬ ꡬ쑰μ λ¬Έμ₯μ νΈλ¦¬ κ·Έλνλ‘ μΆλ ₯ν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
- label_list (list) : νΈλ¦¬κ΅¬μ‘° λ¬Έμ₯μ κ° μΈλ±μ€μ ν΄λΉνλ λΌλ²¨μ ν¬ν¨νλ 리μ€νΈ.
teanaps.nlp.sa.get_sentence_tree
μ°Έκ³ . - edge_list (list) : νΈλ¦¬κ΅¬μ‘° λ¬Έμ₯μ κ° λΌλ²¨ μΈλ±μ€ κ°μ μ°κ²°λ μ£μ§λ₯Ό ν¬ν¨νλ 리μ€νΈ.
teanaps.nlp.sa.get_sentence_tree
μ°Έκ³ .
-
Returns
- plotly graph (graph object) : νΈλ¦¬κ΅¬μ‘° λ¬Έμ₯μ λν νΈλ¦¬ κ·Έλν.
-
Examples
Python Code (in Jupyter Notebook) :
#sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§ μ λλ€." #label_list = ['TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§ μ λλ€.<br>/SENTENCE', 'TEANAPSλ<br>/SUBJECT', 'ν μ€νΈ λ§μ΄λμ<br>/OBJECT', 'μν Python ν¨ν€μ§ μ λλ€.<br>/EF', 'TEANAPS<br>/N', 'λ<br>/J', 'ν μ€νΈ λ§μ΄λ<br>/N', 'μ<br>/J', 'μν<br>/V', 'Python ν¨ν€μ§<br>/N', 'μ λλ€.<br>/S', 'TEANAPS<br>/NNP<br>/UN', 'λ<br>/JX<br>/UN', 'ν μ€νΈ<br>/NNG<br>/UN', 'λ§μ΄λ<br>/NNP<br>/UN', 'μ<br>/JKO<br>/UN', 'μν<br>/VV+ETM<br>/UN', 'Python<br>/NNP<br>/UN', 'ν¨ν€μ§<br>/NNG<br>/UN', 'μ λλ€<br>/VCP+EF<br>/UN', '.<br>/SW<br>/UN'] #edge_list = [(0, 1), (1, 4), (4, 11), (1, 5), (5, 12), (0, 2), (2, 6), (6, 13), (6, 14), (2, 7), (7, 15), (0, 3), (3, 8), (8, 16), (3, 9), (9, 17), (9, 18), (3, 10), (10, 19), (10, 20)] sa.draw_sentence_tree(sentence, label_list, edge_list)
Output (in Jupyter Notebook) :
-
Python Code (in Jupyter Notebook) :
from teanaps.nlp import Processing pro = Processing()
Notes :
- importμ μ΅μ΄ 1ν κ²½κ³ λ©μμ§ (Warnning)κ° μΆλ ₯λ μ μμ΅λλ€. 무μνμ λ μ’μ΅λλ€.
-
teanaps.nlp.Processing.get_synonym()
[Top]-
TEANAPS
μμ κΈ°λ³ΈμΌλ‘ μ 곡νλ λμμ΄ λ¦¬μ€νΈλ₯Ό νΈμΆνκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€. -
Parameters
- None
-
Returns
- result (list) : λμμ΄λ₯Ό λͺ¨λ ν¬ν¨νλ 리μ€νΈ.
-
Examples
Python Code (in Jupyter Notebook) :
result = pro.get_synonym() print(result)
Output (in Jupyter Notebook) :
{'맨체μ€ν° μ λμ΄ν°λ': ['맨체μ€ν° μ λμ΄ν°λ', '맨μ '], 'μμ΄ν°': ['μμ΄ν°', 'iphone', 'μ¬κ³Όν°', 'μμ΄ν°3s', 'μμ΄ν°3', 'μμ΄ν°6', 'μμ΄ν°x'] }
-
-
teanaps.nlp.Processing.add_synonym(word_dict)
[Top]-
TEANAPS
μμ κΈ°λ³ΈμΌλ‘ μ 곡νλ λμμ΄ λ¦¬μ€νΈμ μμμ λμμ΄λ₯Ό μΆκ°ν©λλ€. -
Parameters
- word_dict (dict) : λμμ΄ κ΄κ³κ° μ μλ λμ λ리
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.add_synonym({"μμ΄ν°": ["μμ΄ν°13", "μμ΄ν°13 νλ‘"]}) result = pro.get_synonym() print(result)
Output (in Jupyter Notebook) :
#{'맨체μ€ν° μ λμ΄ν°λ': ['맨체μ€ν° μ λμ΄ν°λ', '맨μ '], # 'μμ΄ν°': ['μμ΄ν°', 'iphone', 'μ¬κ³Όν°', 'μμ΄ν°3s', 'μμ΄ν°3', 'μμ΄ν°6', 'μμ΄ν°x'] #} {'맨체μ€ν° μ λμ΄ν°λ': ['맨체μ€ν° μ λμ΄ν°λ', '맨μ '], 'μμ΄ν°': ['μμ΄ν°', 'iphone', 'μ¬κ³Όν°', 'μμ΄ν°3s', 'μμ΄ν°3', 'μμ΄ν°6', 'μμ΄ν°x', 'μμ΄ν°13', 'μμ΄ν°13 νλ‘'] }
-
-
teanaps.nlp.Processing.remove_synonym(word/word_list)
[Top]-
μ 체 λμμ΄ λ¦¬μ€νΈμμ λμμ΄ λλ λμμ΄ λ¦¬μ€νΈμ ν¬ν¨λ λͺ¨λ λμμ΄λ₯Ό μμ ν©λλ€.
-
Parameters
- word/word_list (str/list) : λμμ΄ λλ λμμ΄λ₯Ό ν¬ν¨νλ 리μ€νΈ
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.remove_synonym("μμ΄ν°3") result = pro.get_synonym() print(result)
Output (in Jupyter Notebook) :
#{'맨체μ€ν° μ λμ΄ν°λ': ['맨체μ€ν° μ λμ΄ν°λ', '맨μ '], # 'μμ΄ν°': ['μμ΄ν°', 'iphone', 'μ¬κ³Όν°', 'μμ΄ν°3s', 'μμ΄ν°3', 'μμ΄ν°6', 'μμ΄ν°x', 'μμ΄ν°13', 'μμ΄ν°13 νλ‘'] #} {'맨체μ€ν° μ λμ΄ν°λ': ['맨체μ€ν° μ λμ΄ν°λ', '맨μ '], 'μμ΄ν°': ['μμ΄ν°', 'iphone', 'μ¬κ³Όν°', 'μμ΄ν°3s', 'μμ΄ν°6', 'μμ΄ν°x', 'μμ΄ν°13', 'μμ΄ν°13 νλ‘'] }
Python Code (in Jupyter Notebook) :
pro.remove_synonym(["iphone", "μ¬κ³Όν°", "μμ΄ν°3s"]) result = pro.get_synonym() print(result)
Output (in Jupyter Notebook) :
#{'맨체μ€ν° μ λμ΄ν°λ': ['맨체μ€ν° μ λμ΄ν°λ', '맨μ '], # 'μμ΄ν°': ['μμ΄ν°', 'iphone', 'μ¬κ³Όν°', 'μμ΄ν°3s', 'μμ΄ν°6', 'μμ΄ν°x', 'μμ΄ν°13', 'μμ΄ν°13 νλ‘'] #} {'맨체μ€ν° μ λμ΄ν°λ': ['맨체μ€ν° μ λμ΄ν°λ', '맨μ '], 'μμ΄ν°': ['μμ΄ν°', 'μμ΄ν°6', 'μμ΄ν°x', 'μμ΄ν°13', 'μμ΄ν°13 νλ‘'] }
-
-
teanaps.nlp.Processing.pro.clear_synonym()
[Top]-
μ 체 λμμ΄ λ¦¬μ€νΈμμ λμμ΄λ₯Ό λͺ¨λ μμ ν©λλ€.
-
Parameters
- None
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.clear_synonym() result = pro.get_synonym() print(result)
Output (in Jupyter Notebook) :
#{'맨체μ€ν° μ λμ΄ν°λ': ['맨체μ€ν° μ λμ΄ν°λ', '맨μ '], # 'μμ΄ν°': ['μμ΄ν°', 'μμ΄ν°6', 'μμ΄ν°x', 'μμ΄ν°13', 'μμ΄ν°13 νλ‘'] #} {'': ['']}
-
-
teanaps.nlp.Processing.set_org_synonym()
[Top]-
λμμ΄ λ¦¬μ€νΈλ₯Ό
TEANAPS
μμ κΈ°λ³ΈμΌλ‘ μ 곡νλ λμμ΄ λ¦¬μ€νΈλ‘ μ΄κΈ°νν©λλ€. -
Parameters
- None
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.set_org_synonym() result = pro.get_synonym() print(result)
Output (in Jupyter Notebook) :
#{'': ['']} {'맨체μ€ν° μ λμ΄ν°λ': ['맨체μ€ν° μ λμ΄ν°λ', '맨μ '], 'μμ΄ν°': ['μμ΄ν°', 'iphone', 'μ¬κ³Όν°', 'μμ΄ν°3s', 'μμ΄ν°3', 'μμ΄ν°6', 'μμ΄ν°x'] }
-
-
teanaps.nlp.Processing.is_synonym(word)
[Top]-
λ¨μ΄κ° 볡ν©λͺ μ¬ λ¦¬μ€νΈμ ν¬ν¨λμ΄μλμ§ μ¬λΆλ₯Ό νμΈνκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- word (str) : λμμ΄
-
Returns
- result (bool) : λμμ΄ ν¬ν¨μ¬λΆ. True or False
-
Examples
Python Code (in Jupyter Notebook) :
result = pro.is_synonym("맨체μ€ν° μ λμ΄ν°λ") print(result)
Output (in Jupyter Notebook) :
True
Python Code (in Jupyter Notebook) :
result = pro.is_synonym("맨체μ€ν° μν°") print(result)
Output (in Jupyter Notebook) :
False
-
-
teanaps.nlp.Processing.get_cnoun()
[Top]-
TEANAPS
μμ κΈ°λ³ΈμΌλ‘ μ 곡νλ 볡ν©λͺ μ¬ λ¦¬μ€νΈλ₯Ό νΈμΆνκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€. -
Parameters
- None
-
Returns
- result (list) : 볡ν©λͺ μ¬λ₯Ό λͺ¨λ ν¬ν¨νλ 리μ€νΈ.
-
Examples
Python Code (in Jupyter Notebook) :
result = pro.get_cnoun() print(result[-10:])
Output (in Jupyter Notebook) :
['ν μ€νΈλ§μ΄λ', 'ν μ€νΈλΆμ', 'μμ°μ΄μ²λ¦¬', 'μ§λ₯μ 보νν', 'λΉμ νλ°μ΄ν°', 'μ μ±λκΈ', 'κ±Έκ·Έλ£Ή', 'μΌμΌμ΄μ€', 'νμμ ν¬', 'νλ€μμ']
-
-
teanaps.nlp.Processing.add_cnoun(word/word_list)
[Top]-
TEANAPS
μμ κΈ°λ³ΈμΌλ‘ μ 곡νλ 볡ν©λͺ μ¬ λ¦¬μ€νΈμ μμμ 볡ν©λͺ μ¬ λλ 볡ν©λͺ μ¬ λ¦¬μ€νΈλ₯Ό μΆκ°ν©λλ€. -
Parameters
- word/word_list (str/list) : 볡ν©λͺ μ¬ λλ 볡ν©λͺ μ¬λ₯Ό ν¬ν¨νλ 리μ€νΈ
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.add_cnoun("μ κΈ°μλμ°¨") result = pro.get_cnoun() print(result[-10:])
Output (in Jupyter Notebook) :
#['ν μ€νΈλ§μ΄λ', 'ν μ€νΈλΆμ', 'μμ°μ΄μ²λ¦¬', 'μ§λ₯μ 보νν', 'λΉμ νλ°μ΄ν°', 'μ μ±λκΈ', 'κ±Έκ·Έλ£Ή', 'μΌμΌμ΄μ€', 'νμμ ν¬', 'νλ€μμ'] ['ν μ€νΈλΆμ', 'μμ°μ΄μ²λ¦¬', 'μ§λ₯μ 보νν', 'λΉμ νλ°μ΄ν°', 'μ μ±λκΈ', 'κ±Έκ·Έλ£Ή', 'μΌμΌμ΄μ€', 'νμμ ν¬', 'νλ€μμ', 'μ κΈ°μλμ°¨']
Python Code (in Jupyter Notebook) :
pro.add_cnoun(["μ₯λκ°μλμ°¨", "μ΄μ°¨μ μ§", "μ λνΈλ ν¬"]) result = pro.get_cnoun() print(result[-10:])
Output (in Jupyter Notebook) :
#['ν μ€νΈλΆμ', 'μμ°μ΄μ²λ¦¬', 'μ§λ₯μ 보νν', 'λΉμ νλ°μ΄ν°', 'μ μ±λκΈ', 'κ±Έκ·Έλ£Ή', 'μΌμΌμ΄μ€', 'νμμ ν¬', 'νλ€μμ', 'μ κΈ°μλμ°¨'] ['λΉμ νλ°μ΄ν°', 'μ μ±λκΈ', 'κ±Έκ·Έλ£Ή', 'μΌμΌμ΄μ€', 'νμμ ν¬', 'νλ€μμ', 'μ κΈ°μλμ°¨', 'μ₯λκ°μλμ°¨', 'μ΄μ°¨μ μ§', 'μ λνΈλ ν¬']
-
-
teanaps.nlp.Processing.remove_cnoun(word/word_list)
[Top]-
μ 체 볡ν©λͺ μ¬ λ¦¬μ€νΈμμ 볡ν©λͺ μ¬ λλ 볡ν©λͺ μ¬ λ¦¬μ€νΈλ₯Ό λͺ¨λ μμ ν©λλ€.
-
Parameters
- word/word_list (str/list) : 볡ν©λͺ μ¬ λλ 볡ν©λͺ μ¬λ₯Ό ν¬ν¨νλ 리μ€νΈ
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.remove_cnoun("μ λνΈλ ν¬") result = pro.get_cnoun() print(result[-10:])
Output (in Jupyter Notebook) :
#['λΉμ νλ°μ΄ν°', 'μ μ±λκΈ', 'κ±Έκ·Έλ£Ή', 'μΌμΌμ΄μ€', 'νμμ ν¬', 'νλ€μμ', 'μ κΈ°μλμ°¨', 'μ₯λκ°μλμ°¨', 'μ΄μ°¨μ μ§', 'μ λνΈλ ν¬'] ['μ§λ₯μ 보νν', 'λΉμ νλ°μ΄ν°', 'μ μ±λκΈ', 'κ±Έκ·Έλ£Ή', 'μΌμΌμ΄μ€', 'νμμ ν¬', 'νλ€μμ', 'μ κΈ°μλμ°¨', 'μ₯λκ°μλμ°¨', 'μ΄μ°¨μ μ§']
Python Code (in Jupyter Notebook) :
pro.remove_cnoun(["μ κΈ°μλμ°¨", "μ₯λκ°μλμ°¨", "μ΄μ°¨μ μ§"]) result = pro.get_cnoun() print(result[-10:])
Output (in Jupyter Notebook) :
#['μ§λ₯μ 보νν', 'λΉμ νλ°μ΄ν°', 'μ μ±λκΈ', 'κ±Έκ·Έλ£Ή', 'μΌμΌμ΄μ€', 'νμμ ν¬', 'νλ€μμ', 'μ κΈ°μλμ°¨', 'μ΄μ°¨μ μ§'] ['ν μ€νΈλ§μ΄λ', 'ν μ€νΈλΆμ', 'μμ°μ΄μ²λ¦¬', 'μ§λ₯μ 보νν', 'λΉμ νλ°μ΄ν°', 'μ μ±λκΈ', 'κ±Έκ·Έλ£Ή', 'μΌμΌμ΄μ€', 'νμμ ν¬', 'νλ€μμ']
-
-
teanaps.nlp.Processing.clear_cnoun()
[Top]-
μ 체 볡ν©λͺ μ¬ λ¦¬μ€νΈμμ 볡ν©λͺ μ¬ λλ 볡ν©λͺ μ¬ λ¦¬μ€νΈλ₯Ό λͺ¨λ μμ ν©λλ€.
-
Parameters
- None
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.clear_cnoun() result = pro.get_cnoun() print(result[-10:])
Output (in Jupyter Notebook) :
#['ν μ€νΈλ§μ΄λ', 'ν μ€νΈλΆμ', 'μμ°μ΄μ²λ¦¬', 'μ§λ₯μ 보νν', 'λΉμ νλ°μ΄ν°', 'μ μ±λκΈ', 'κ±Έκ·Έλ£Ή', 'μΌμΌμ΄μ€', 'νμμ ν¬', 'νλ€μμ'] []
-
-
teanaps.nlp.Processing.set_org_cnoun()
[Top]-
볡ν©λͺ μ¬ λ¦¬μ€νΈλ₯Ό
TEANAPS
μμ κΈ°λ³ΈμΌλ‘ μ 곡νλ 볡ν©λͺ μ¬ λ¦¬μ€νΈλ‘ μ΄κΈ°νν©λλ€. -
Parameters
- None
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.set_org_cnoun() result = pro.get_cnoun() print(result[-10:])
Output (in Jupyter Notebook) :
#[] ['ν μ€νΈλ§μ΄λ', 'ν μ€νΈλΆμ', 'μμ°μ΄μ²λ¦¬', 'μ§λ₯μ 보νν', 'λΉμ νλ°μ΄ν°', 'μ μ±λκΈ', 'κ±Έκ·Έλ£Ή', 'μΌμΌμ΄μ€', 'νμμ ν¬', 'νλ€μμ']
-
-
teanaps.nlp.Processing.is_cnoun(word)
[Top]-
λ¨μ΄κ° 볡ν©λͺ μ¬ λ¦¬μ€νΈμ ν¬ν¨λμ΄μλμ§ μ¬λΆλ₯Ό νμΈνκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- word (str) : 볡ν©λͺ μ¬
-
Returns
- result (bool) : 볡ν©λͺ μ¬ ν¬ν¨μ¬λΆ. True or False
-
Examples
Python Code (in Jupyter Notebook) :
result = pro.is_cnoun("ν μ€νΈλ§μ΄λ") print(result)
Output (in Jupyter Notebook) :
True
Python Code (in Jupyter Notebook) :
result = pro.is_cnoun("μ κΈ°μλμ°¨") print(result)
Output (in Jupyter Notebook) :
False
-
-
teanaps.nlp.Processing.get_stopword()
[Top]-
TEANAPS
μμ κΈ°λ³ΈμΌλ‘ μ 곡νλ λΆμ©μ΄λ₯Ό νΈμΆνκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€. -
Parameters
- None
-
Returns
- result (list) : λΆμ©μ΄λ₯Ό λͺ¨λ ν¬ν¨νλ 리μ€νΈ.
-
Examples
Python Code (in Jupyter Notebook) :
result = pro.get_stopword() print(result[-10:])
Output (in Jupyter Notebook) :
['γ ', 'γ ', 'γ ', 'γ ', 'γ ‘', 'γ £', '', 'μ', 'λ', 'μ΄']
-
-
teanaps.nlp.Processing.add_stopword(word/word_list)
[Top]-
TEANAPS
μμ κΈ°λ³ΈμΌλ‘ μ 곡νλ λΆμ©μ΄ 리μ€νΈμ μμμ λΆμ©μ΄ λλ λΆμ©μ΄ 리μ€νΈλ₯Ό μΆκ°ν©λλ€. -
Parameters
- word/word_list (str/list) : λΆμ©μ΄ λλ λΆμ©μ΄λ₯Ό ν¬ν¨νλ 리μ€νΈ
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.add_stopword("κ°") result = pro.get_stopword() print(result[-10:])
Output (in Jupyter Notebook) :
#['γ ', 'γ ', 'γ ', 'γ ', 'γ ‘', 'γ £', '', 'μ', 'λ', 'μ΄'] ['γ ', 'γ ', 'γ ', 'γ ‘', 'γ £', '', 'μ', 'λ', 'μ΄', 'κ°']
Python Code (in Jupyter Notebook) :
pro.add_stopword(["μΌλ‘", "λ‘μ", "λλ¬Έμ"]) result = pro.get_stopword() print(result[-10:])
Output (in Jupyter Notebook) :
#['γ ', 'γ ', 'γ ', 'γ ‘', 'γ £', '', 'μ', 'λ', 'μ΄', 'κ°'] ['γ ‘', 'γ £', '', 'μ', 'λ', 'μ΄', 'κ°', 'μΌλ‘', 'λ‘μ', 'λλ¬Έμ']
-
-
teanaps.nlp.Processing.remove_stopword(word/word_list)
[Top]-
μ 체 λΆμ©μ΄ 리μ€νΈμμ λΆμ©μ΄ λλ λΆμ©μ΄ 리μ€νΈλ₯Ό λͺ¨λ μμ ν©λλ€.
-
Parameters
- word/word_list (str/list) : λΆμ©μ΄ λλ λΆμ©μ΄λ₯Ό ν¬ν¨νλ 리μ€νΈ
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.remove_stopword("λλ¬Έμ") result = pro.get_stopword() print(result[-10:])
Output (in Jupyter Notebook) :
#['γ ‘', 'γ £', '', 'μ', 'λ', 'μ΄', 'κ°', 'μΌλ‘', 'λ‘μ', 'λλ¬Έμ'] ['γ ', 'γ ‘', 'γ £', '', 'μ', 'λ', 'μ΄', 'κ°', 'μΌλ‘', 'λ‘μ']
Python Code (in Jupyter Notebook) :
pro.remove_stopword(["μ", "λ", "μ΄", "κ°"]) result = pro.get_stopword() print(result[-10:])
Output (in Jupyter Notebook) :
#['γ ', 'γ ‘', 'γ £', '', 'μ', 'λ', 'μ΄', 'κ°', 'μΌλ‘', 'λ‘μ'] ['γ ', 'γ ', 'γ ', 'γ ', 'γ ', 'γ ‘', 'γ £', '', 'μΌλ‘', 'λ‘μ']
-
-
teanaps.nlp.Processing.clear_stopword()
[Top]-
μ 체 λΆμ©μ΄ 리μ€νΈμμ λΆμ©μ΄ λλ λΆμ©μ΄ 리μ€νΈλ₯Ό λͺ¨λ μμ ν©λλ€.
-
Parameters
- None
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.clear_stopword() result = pro.get_stopword() print(result[-10:])
Output (in Jupyter Notebook) :
#['γ ', 'γ ‘', 'γ £', '', 'μ', 'λ', 'μ΄', 'κ°', 'μΌλ‘', 'λ‘μ'] []
-
-
teanaps.nlp.Processing.set_org_stopword()
[Top]-
λΆμ©μ΄ 리μ€νΈλ₯Ό
TEANAPS
μμ κΈ°λ³ΈμΌλ‘ μ 곡νλ λΆμ©μ΄ 리μ€νΈλ‘ μ΄κΈ°νν©λλ€. -
Parameters
- None
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.set_org_stopword() result = pro.get_stopword() print(result[-10:])
Output (in Jupyter Notebook) :
#[] ['γ ', 'γ ', 'γ ', 'γ ', 'γ ‘', 'γ £', '', 'μ', 'λ', 'μ΄']
-
-
teanaps.nlp.Processing.is_stopword(word)
[Top]-
λ¨μ΄κ° λΆμ©μ΄ 리μ€νΈμ ν¬ν¨λμ΄μλμ§ μ¬λΆλ₯Ό νμΈνκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- word (str) : λΆμ©μ΄
-
Returns
- result (bool) : λΆμ©μ΄ ν¬ν¨μ¬λΆ. True or False
-
Examples
Python Code (in Jupyter Notebook) :
result = pro.is_stopword("μ") print(result)
Output (in Jupyter Notebook) :
True
Python Code (in Jupyter Notebook) :
result = pro.is_stopword("μλλ¨μ΄") print(result)
Output (in Jupyter Notebook) :
False
-
-
teanaps.nlp.Processing.start_timer()
[Top]-
νμ΄λ¨Έλ₯Ό μ΄κΈ°ννκ³ λ€μ μμν©λλ€.
-
Parameters
- None
-
Returns
- None
-
Examples
Python Code (in Jupyter Notebook) :
pro.start_timer()
-
-
teanaps.nlp.Processing.lab_timer()
[Top]-
νμ΄λ¨Έ λ©νμμ κΈ°λ‘νκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- None
-
Returns
- result (list) : (λ©, λ©νμ) ꡬ쑰μ Tupleμ ν¬ν¨νλ 리μ€νΈ.
-
Examples
Python Code (in Jupyter Notebook) :
import time #pro.start_timer() time.sleep(1) result = pro.lab_timer() print(result) time.sleep(2) result = pro.lab_timer() print(result)
Output (in Jupyter Notebook) :
[(1, 1.0033)] [(1, 1.0033), (2, 3.0068)]
-
-
teanaps.nlp.Processing.get_token_position(sentence, tag_list)
[Top]-
λ¬Έμ₯μ λμ΄μ°κΈ° μ€λ₯λ₯Ό 보μ νκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
- tag_list (str) : (λ¨μ΄, νκ·Έ) ꡬ쑰μ Tupleμ ν¬ν¨νλ 리μ€νΈ.
-
Returns
- result (str) : (λ¨μ΄, νκ·Έ, μμΉ) ꡬ쑰μ Tupleμ ν¬ν¨νλ 리μ€νΈ.
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§μ λλ€." tag_list = [("TEANAPS", "UN"), ("Python", "UN")] result = pro.get_token_position(sentence, tag_list) print(result)
Output (in Jupyter Notebook) :
[('TEANAPS', 'UN', (0, 7)), ('Python', 'UN', (21, 27))]
-
-
teanaps.nlp.Processing.language_detector(sentence)
[Top]-
λ¬Έμ₯μ μΈμ΄λ₯Ό μλ³νκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
-
Returns
- result (str) : μλ³λ μΈμ΄ μ ν. νκ΅μ΄λ "ko", μμ΄λ "en".
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§μ λλ€." result = pro.language_detector(sentence) print(result)
Output (in Jupyter Notebook) :
ko
Python Code (in Jupyter Notebook) :
sentence = "If it is to be, it's up to me." result = pro.language_detector(sentence) print(result)
Output (in Jupyter Notebook) :
en
-
-
teanaps.nlp.Processing.iteration_remover(sentence, replace_char=".")
[Top]-
λ¬Έμ₯μμ 무μλ―Ένκ² λ°λ³΅λλ ν¨ν΄μ μ°Ύμλ΄ "."μΌλ‘ μΉνν λ¬Έμ₯μ λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
- replace_char (str) : λ°λ³΅λλ ν¨ν΄μ λ체ν λ¬Έμμ΄.
-
Returns
- result (str) : λ°λ³΅λ ν¨ν΄μ΄ μΉνλ λ¬Έμ₯.
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§μ λλ€γ γ γ γ γ γ γ γ γ γ γ γ γ " result = pro.iteration_remover(sentence) print(result)
Output (in Jupyter Notebook) :
TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§μ λλ€γ ........
-
-
teanaps.nlp.Processing.get_plain_text(sentence, pos_list=[], word_index=0, pos_index=1, tag_index=1, tag=True)
[Top]-
ννμ λλ κ°μ²΄λͺ νκ·Έλ₯Ό "/"λ‘ κ΅¬λΆν΄ νκΉ νμ¬ λ¬Έμ₯ ννλ‘ μμ±νκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
- pos_list (list) : νν°λ§ν νκ·Έκ° ν¬ν¨λ ννμ μΈλ±μ€.
- word_index (str) : λ¨μ΄κ° ν¬ν¨λ ννμ μΈλ±μ€.
- pos_index (int) : νν°λ§ν νκ·Έκ° ν¬ν¨λ ννμ μΈλ±μ€.
- tag_index (int) : νκΉ ν νκ·Έκ° ν¬ν¨λ ννμ μΈλ±μ€.
- tag (bool) : νκ·Έ ν¬ν¨μ¬λΆ.
-
Returns
- result (str) : λ°λ³΅λ ν¨ν΄μ΄ μΉνλ λ¬Έμ₯.
-
Examples
Python Code (in Jupyter Notebook) :
#from teanaps.nlp import MorphologicalAnalyzer #ma = MorphologicalAnalyzer() #ma.set_tagger("mecab") #sentence = "TEANAPSλ ν μ€νΈ λ§μ΄λμ μν Python ν¨ν€μ§μ λλ€." #ma_result = ma.parse(sentence) ma_result = [('TEANAPS', 'OL', (0, 7)), ('λ', 'JX', (7, 8)), ('ν μ€νΈ', 'NNG', (9, 12)), ('λ§μ΄λ', 'NNP', (13, 16)), ('μ', 'JKO', (16, 17)), ('μν', 'VV+ETM', (18, 20)), ('Python', 'OL', (21, 27)), ('ν¨ν€μ§', 'NNG', (28, 31)), ('μ λλ€', 'VCP+EF', (31, 34)), ('.', 'SW', (34, 35))] result = pro.get_plain_text(ma_result) print(result)
Output (in Jupyter Notebook) :
TEANAPS/OL λ/JX ν μ€νΈ/NNG λ§μ΄λ/NNP μ/JKO μν/VV+ETM Python/OL ν¨ν€μ§/NNG μ λλ€/VCP+EF ./SW
-
-
teanaps.nlp.Processing.replacer(sentence)
[Top]-
λ¬Έμ₯μμ μΆμ½λ ννμ μ°Ύμ μλμ ννμΌλ‘ μμ νκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
-
Returns
- result (str) : μΆμ½λ ννμ΄ μμ λ λ¬Έμ₯.
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "If it is to be, it's up to me." result = pro.replacer(sentence) print(result)
Output (in Jupyter Notebook) :
If it is to be, it is up to me.
-
-
teanaps.nlp.Processing.masking(sentence, replace_char="*", replace_char_pattern = "", ner_tag_list=[], model_path="")
[Top]-
λ¬Έμ₯μμ μΆμΆλ κ°μ²΄λͺ μ λ€λ₯Έ λ¬Έμμ΄λ‘ μΉννκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- sentence (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έμ₯. μ΅λ 128μ.
- replace_char (str) : κ°μ²΄λͺ μ μΉνν λ¬Έμμ΄.
- replace_char_pattern (str) : κ°μ²΄λͺ μ μΉνν λ¬Έμμ΄ ν¨ν΄.
- ner_tag_list (list) : μΉν λμ κ°μ²΄λͺ νκ·Έ 리μ€νΈ.
- model_path (str) : κ°μ²΄λͺ μΈμ λͺ¨λΈ νμΌ κ²½λ‘.
-
Returns
- result (str) : κ°μ²΄λͺ μ λ€λ₯Έ λ¬Έμμ΄λ‘ μΉνν λ¬Έμ₯.
-
Examples
Python Code (in Jupyter Notebook) :
sentence = "μ μ΄λ¦μ μ μμ€ ν¬ν°μ΄κ³ μ°λ½μ²λ 010-1234-5678 μ λλ€." result = pro.masking(sentence) print(result)
Output (in Jupyter Notebook) :
μ μ΄λ¦μ ******μ΄κ³ μ°λ½μ²λ ************* μ λλ€.
Python Code (in Jupyter Notebook) :
sentence = "μ μ΄λ¦μ μ μμ€ ν¬ν°μ΄κ³ μ°λ½μ²λ 010-1234-5678 μ λλ€." replace_char_pattern = "___-**__-**__" result = pro.masking(sentence) print(result)
Output (in Jupyter Notebook) :
μ μ΄λ¦μ μ μμ€ **μ΄κ³ μ°λ½μ²λ 010-**34-**78 μ λλ€.
-
-
teanaps.nlp.Processing.sentence_splitter(paragraph)
[Top]-
μ¬λ¬κ° λ¬Έμ₯μ΄ ν¬ν¨λ λ¬Έλ¨μ λ¬Έμ₯ λ¨μλ‘ κ΅¬λΆνκ³ κ·Έ κ²°κ³Όλ₯Ό λ°νν©λλ€.
-
Parameters
- paragraph (str) : νκ΅μ΄ λλ μμ΄λ‘ ꡬμ±λ λ¬Έλ¨
-
Returns
- result (list) : λ¬Έλ¨μ ν¬ν¨λ λ¬Έμ₯μ ν¬ν¨νλ 리μ€νΈ.
-
Examples
Python Code (in Jupyter Notebook) :
paragraph = "μ΄λ¨Έλ...μλ νμΈμ. TEANAPSλ₯Ό λ€μ μ°Ύμμ£Όμ ¨κ΅°μ!" result = pro.sentence_splitter(paragraph) print(result)
Output (in Jupyter Notebook) :
['μ΄λ¨Έλ...', 'μλ νμΈμ.', 'TEANAPSλ₯Ό λ€μ μ°Ύμμ£Όμ ¨κ΅°μ!']
-
- TBU