[interview] questions - dsindex/blog GitHub Wiki

  • recent questions

  • algorithm and data structure

    • coding test samples
    • sorting
      • quick, heap, merge, insertion, radix
      • find top k items : partial sort(using min heap), quick select)
    • data structure
      • linked list
      • stack
      • queue, priority queue
      • binary tree
      • binary search tree
      • btree, trie, hash
      • graph
    • edit distance
    • longest common substring
    • string search
      • BM
      • KMP, aho-corasick
      • suffix tree, suffix array
      • segment tree, range minimum query
    • viterbi algorithm
    • beam search
  • simple coding

    • strcat, str reverse
    • tree에서 common ancestor
    • atoi
    • utf-8 string에서 n-gram 생성
    • 1 ~ 10까지 binary tree. 1이 root. main()안에서 함수 없이 tree 구성
  • machine learning

    • 중심극한정리(central limit theorem)?
    • why sample mean is unbiased estimator? 어째서 sample mean이 global mean의 unbiased estimator인가?
    • bayesian 정리
      • prior, evidence, likelihood, posterior, maximum likelihood, maximum a posteriori
      • likelihood와 probability의 차이점?
    • entropy, relative entropy, cross entropy, mutual information
    • naive bayes와 hidden markov model의 차이점?
    • maximum entropy model과 conditional random field의 차이점?
    • hidden markov model을 crf로 표현한다면?
    • maximum entropy markov model과 crf의 차이점?
      • label bias?
      • RNN에서 label bias?
    • beam search와 viterbi search 차이점
      • best first search는?
    • precision, recall, f-measure, accuracy
    • support vector machine, decision tree, random forest
    • linear algebra
      • eigen vector, eigen value, SVD
    • linear/logistic/multinomial logistic regression
    • multi layer perceptron
    • sigmoid derivative
    • softmax
      • softmax derivative
      • what will be happened for large output node?
      • hierarchical softmax and negative sampling
    • cost function
    • learning slow down problem, why?
    • overfitting, underfitting
      • regularization, dropout
    • weight initialization
      • why do we prefer sharpened truncated normal distribution?
    • hyper parameters
      • epoch(early stoping), schedule learning rate, regularization factor, mini-batch size
    • variation of gradient descent
      • Hessian technique(gradient of gradient)
      • momentum-based gradient descent(velocity)
    • vanishing gradient, why?
      • relu activation function
    • cnn
      • what is convolutional operator?
      • differences b/w conv1d, conv2d, conv3d
      • why does each filters learn different features?
    • rnn
    • lstm
    • attention
    • language model
    • word2vec
      • objective function의 직관적인 의미 설명? 문제는? negative sampling을 한다면?
      • k-nearest neighbor
        • how to implement?
      • subword information을 이용하려면?
      • lookup-based word embedding과 RNN-based LM word embedding의 차이
  • other question list

    • ace the coding interview every time
    • top-10 algorithms for coding interview
    • top-10 algorithms in interview questions
    • careercup
    • numberworks
    • deep mind
    • amazon
    • airbnb
    • etc
      • 두개의 string A, B에 대해서 A에만 있는 character를 추출
      • 주어진 string을 역순으로 출력하는 코드 작성
      • BST(Binary Search Tree) traversal(http://minjang.github.io/2016/05/03/finding-subtle-mistake/)
      • quick sort와 heap sort의 차이점 설명. in-place 알고리즘이란?
      • Given a random generator that produces a number 1 to 5 uniformly, write a function that produces a number from 1 to 7 uniformly.
      • Segment a long string into a set of valid words using a dictionary. Return false if the string cannot be segmented. What is the complexity of your solution?
      • Find the second largest element in a Binary Search Tree
      • Find out k most frequent numbers from incoming stream of numbers one the fly
      • What is the optimization problem for a SVM?
      • Implement the pow function.
      • Generate a sorted vector from two sorted vectors.
      • Describe the different classification and prediction models. (k-means clustering, bayesian model, decision trees )
  • job list

  • etc