Finalized Project Plan: Raspberry Pi 5 STM32H7 Ultrasonic Data Logger - dbsandis/MyUTProject GitHub Wiki
📌 Finalized Project Plan: Raspberry Pi 5 + STM32H7 Ultrasonic Data Logger
Since you're a highly experienced developer with hardware and software expertise (from 8088 assembly to Django), I recommend a modular approach using Raspberry Pi 5 + STM32H7, which will allow easy migration to a more powerful system later.
1️⃣ Project Overview: Raspberry Pi 5 + STM32H7 Data Logger
✔ Raspberry Pi 5 → Handles heatmap visualization, AI processing, cloud tracking.
✔ STM32H7 MCU → Handles real-time ultrasonic signal capture & preprocessing.
✔ LTC2387-16 ADC → High-speed 16-bit ADC for ultrasonic wave capture.
✔ 5 MHz Ultrasonic Transducer → Used for pipe thickness measurement.
✔ Battery-Powered (Li-Ion 3.7V, 2500mAh) → Portable & compact form factor.
✔ Cloud Integration (WiFi/5G via Raspberry Pi) → Tracks data in real time.
✔ Future-Proofing → Easy to migrate from Raspberry Pi to Snapdragon when needed.
2️⃣ Updated Hardware Block Diagram
[BATTERY (Li-Ion 3.7V, 2500mAh)]
↓
[Power Management Circuit (Boost Converter, LDO)]
↓
[STM32H7 MCU] → [High-Speed ADC (LTC2387-16)]
↓
[Raspberry Pi 5 (AI Processing, Heatmap Display, Cloud Sync)]
↓
├── [Django-Based Web UI for Data Tracking]
├── [OpenCV for Real-Time Heatmaps]
├── [SQLite/PostgreSQL for Data Storage]
├── [5G/WiFi for Remote Monitoring]
├── [SSD for High-Speed Data Logging]
3️⃣ Recommended Parts List & Purchase Links
Component | Function | Estimated Cost | Purchase Link |
---|---|---|---|
Raspberry Pi 5 (8GB RAM) | Main processing unit (AI, cloud, UI) | $100-$150 | Pi 5 @ PiShop |
STM32H743ZI (NUCLEO-H743ZI2) | Real-time ultrasonic signal processing | $40-$60 | Mouser |
LTC2387-16 ADC (16-bit, 15 MSPS) | High-speed ultrasonic echo capture | $50-$80 | Analog Devices |
5 MHz Ultrasonic Transducer | Sends/receives ultrasonic waves | $50-$100 | Olympus |
Power Supply (Li-Ion 3.7V, 2500mAh + TP4056 Charger) | Portable power source | $10-$20 | Amazon |
MicroSD Card (SanDisk Extreme 64GB+ or SSD) | Storage for Raspberry Pi | $15-$40 | Amazon |
WiFi 6 / 5G Module (Sixfab LTE Hat for Pi) | Remote connectivity for cloud sync | $100-$200 | Sixfab |
TFT Display (3.5”-5”) | On-device visualization | $30-$70 | Waveshare |
4️⃣ Software Stack & Implementation Plan
✅ Step 1: STM32H7 Real-Time Data Acquisition
- Configure SPI DMA for LTC2387-16 (16-bit, 15 MSPS).
- Develop low-latency ADC capture firmware in STM32CubeIDE.
- Send data to Raspberry Pi via SPI/UART for analysis.
🔹 STM32 SPI ADC Logging Code Example
#include "stm32h7xx_hal.h"
#define ADC_BUF_SIZE 1024
uint16_t adc_buffer[ADC_BUF_SIZE];
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) {
SendDataToRaspberryPi(adc_buffer, ADC_BUF_SIZE);
}
int main() {
HAL_Init();
ADC_Config();
HAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buffer, ADC_BUF_SIZE);
while (1) {
HAL_Delay(100);
}
}
✅ Step 2: Raspberry Pi 5 AI Processing & Heatmap Display
- Use OpenCV & Matplotlib for ultrasonic signal visualization.
- Process ADC data into heatmaps using NumPy.
- Implement Django-based UI for real-time data tracking.
🔹 Heatmap Visualization Code (Python)
import numpy as np
import matplotlib.pyplot as plt
# Simulated ultrasonic data
data = np.random.randn(100, 100)
plt.imshow(data, cmap='hot', interpolation='nearest')
plt.colorbar()
plt.title("Ultrasonic Heatmap")
plt.show()
✅ Step 3: Cloud Data Sync & Web Dashboard (Django)
- SQLite/PostgreSQL for ultrasonic data storage.
- Django-based API to push logs to the cloud.
- Flask or Dash for a local web UI on Pi 5.
🔹 Django API for Data Logging
from django.shortcuts import render
from django.http import JsonResponse
from .models import UltrasonicData
def log_data(request):
if request.method == 'POST':
data = request.POST.get('adc_value')
UltrasonicData.objects.create(value=data)
return JsonResponse({'status': 'success'})
5️⃣ Final Migration Path: From Raspberry Pi 5 to More Powerful System
Phase | Hardware | Software | Estimated Timeline |
---|---|---|---|
Phase 1 | Raspberry Pi 5 + STM32 | Django + OpenCV + PostgreSQL | 3-6 months |
Phase 2 | Upgrade to Snapdragon Dev Kit | Optimize AI, TensorFlow Edge | 6-12 months |
Phase 3 | Custom PCB (Snapdragon + STM32) | Fully integrated solution | 12-24 months |
📌 Starting with Raspberry Pi 5 is the fastest and most practical way to get a working system before migrating to Snapdragon!
6️⃣ Next Steps
🔍 Would you like a PCB design for integrating STM32H7 + Power Management?
📡 Should I research best cloud storage options for ultrasonic tracking?
🎨 Do you need UI/UX wireframes for the Django-based heatmap interface?
🚀 Let me know how you'd like to proceed! Your ultrasonic data logger is now fully planned!