lecture 8b - davidar/scholarpedia GitHub Wiki
We follow Humphreys, 1972 closely for those parts that are not explicitly concerned with cohomology.
Although we use <math>\mathbb{C}</math> as our field, one can also do the initial part of this section with an arbitrary field.
At some point we will need the field to have characteristic zero, and a bit later we want it to be closed.
The latter condition can be slightly relaxed, but we need to find the roots of the characteristic equation of the ad-action of elements in the Lie algebra.
Let <math>\tilde{\mathfrak{g}}=\mathfrak{g}/\ker d_1</math> (This makes sense, since <math>\ker d_1</math> is an ideal).
A trace form <math> K_\mathfrak{a}</math> on <math>\mathfrak{g}</math> induces a trace form <math>\tilde{K}_\mathfrak{a}</math> on <math>\tilde{\mathfrak{g}}</math> by
- <math>\tilde{K}_\mathfrak{a}([x],[y])=K_\mathfrak{a}(x,y)</math>
If <math>\tilde{K}_\mathfrak{a}</math> is nondegenerate, then define <math>e^1,\cdots,e^n</math> to be the dual basis with respect to <math>\tilde{K}_\mathfrak{a}\ ,</math> that is, <math>\tilde{K}_\mathfrak{a}(e_i,e^j)=\delta_i^j\ .</math>
Let, for <math>\mathfrak{g}=\tilde{\mathfrak{g}}=\mathfrak{sl}_2\ ,</math> the basis be given by
- <math>e_1=M,\quad e_2=N,\quad e_3=H</math>
- <math> e^1=N,\quad e^2=M,\quad e^3=\frac{1}{2} H</math>
Suppose <math> [e_i,e_j]=\sum_{k=1}^n c_{ij}^k e_k\ .</math> Then <math>[e^i,e_j]=\sum_{k=1}^n c_{jk}^i e^k\ .</math>
The structure constants <math>c_{ij}^k</math> can be expressed in terms of the trace form as follows.
- <math> \tilde{K}_\mathfrak{a}([e_i,e_j],e^k)=\sum_{s=1}^n c_{ij}^s \tilde{K}_\mathfrak{a}(e_s,e^k)=\sum_{s=1}^n c_{ij}^s \delta_s^k=c_{ij}^k</math>
- <math>\tilde{K}_\mathfrak{a}(e_k,[e^i,e_j])=\sum_{s=1}^n d_{js}^i \tilde{K}_\mathfrak{a}(e_k,e^s)=\sum_{s=1}^n d_{js}^i \delta_k^s=d_{jk}^i</math>
- <math>\tilde{K}_\mathfrak{a}(e_k,[e^i,e_j])=-\tilde{K}_\mathfrak{a}(e_k,[e_j,e^i])=\tilde{K}_\mathfrak{a}([e_j,e_k],e^i)=c_{jk}^i</math>
- <math> [x,e^i]=-\sum_{k=1}^n \tilde{K}_\mathfrak{a}(x,[e_k,e^i])e^k</math> and <math> [x,e_i]=\sum_{k=1}^n \tilde{K}_\mathfrak{a}(x,[e_i,e^k])e_k</math>
Define the Casimir operator <math>\gamma</math> by
- <math>\gamma=\sum_{i=1}^n d_1(e^i)d_1(e_i) \in End(\mathfrak{a})</math>
For the Casimir to exist one only needs finite-dimensionality of <math>\mathfrak{g}\ ,</math> <math>\mathfrak{a}</math> can be infinite dimensional.
Only when <math>K_{\mathfrak{a}}</math> plays a role, one assumes <math>\mathfrak{a}</math> to be finite-dimensional, just so that one does not have to worry about traces in infinite-dimensional spaces.
The <math>e_i, e^i</math> stand for equivalence classes, but taking different representatives does not change the value of <math>\gamma\ .</math>
The definition of <math>\gamma</math> is also independent of the choice of basis.
Let <math> f_i=\sum_{k=1}^n A_i^k e_k\ ,</math> with <math>A</math> an invertible matrix, be another basis, with dual basis <math>f^i\ .</math>
Let <math>f^i=\sum_{k=1}^n B_k^i e^k\ .</math>
Then
- <math>\delta_j^i=K_\mathfrak{b}(e^i,e_j)=\sum_{k,l=1}^n B_k^i A_j^l K_\mathfrak{b}(f^k,f_l)=\sum_{k,l=1}^n B_k^i A_j^l\delta_l^k=\sum_{k=1}^n B_k^i A_j^k</math>
- <math>\gamma=\sum_{i=1}^n d_1(f^i)d_1(f_i)</math>
If the dual basis is chosen with respect to <math>K_\mathfrak{a}\ ,</math> then
- <math> \mathrm{tr }(\gamma)=\sum_{i=1}^n \mathrm{tr }(d_1(e^i)d_1(e_i))=\sum_{i=0}^n K_\mathfrak{a}(e^i,e_i)=n</math>
In the case <math>\mathfrak{g}=\mathfrak{sl}_2</math> and <math>\mathfrak{a}=\R^2\ ,</math> with the standard representation, one has
- <math>\gamma=d_1(e^1)d_1(e_1)+d_1(e^2)d_1(e_3)+d_1(e^3)d_1(e_3)\ :</math>
- <math>=d_1(N)d^{(0)}(M)+d_1(M)d^{(0)}(N)+\frac{1}{2}d_1(H)d_1(H)\ :</math>
- <math>=\begin{bmatrix} 0&0\\1&0\end{bmatrix}\begin{bmatrix} 0&1\\0&0\end{bmatrix}+
- <math>=\frac{3}{2}\begin{bmatrix} 1&0\\0&1\end{bmatrix}</math>
Suppose <math>\dim\mathfrak{a}<\infty\ .</math> Then
- <math>\gamma d_1(x)=d_1(x)\gamma</math>
- <math>\gamma d_1(x)-d_1(x)\gamma\ :</math>
- <math>=\sum_{i=1}^n d_1(e^i)d_1(e_i)d_1(x)-d_1(x)\sum_{i=1}^n d_1(e^i)d_1(e_i)\ :</math>
- <math>=\sum_{i=1}^n d_1(e^i)d_1([e_i,x])+\sum_{i=1}^n d_1(e^i)d_1(x)d_1(e_i)-\sum_{i=1}^n d_1(e^i)d_1(x)d(e_i)+\sum_{i=1}^n d_1([e^i,x])d_1(e_i)\ :</math>
- <math>=\sum_{i=1}^n d_1(e^i)d_1([e_i,x])+\sum_{i=1}^n d_1([e^i,x])d_1(e_i)\ :</math>
- <math>=-\sum_{i,j=1}^n \tilde{K}_{\mathfrak{a}}(x,[e_i,e^j])d_1(e^i)d_1(e_j)+\sum_{i,j=1}^n \tilde{K}_{\mathfrak{a}}(x,[e_j,e^i]) d_1(e^j) d_1(e_i)\ :</math>
- <math>=0</math>
The map <math>\gamma</math> is a <math>\mathfrak{g}</math>-endomorphism.
Let <math>\alpha\in \mathrm{End}_\mathfrak{g}(\mathfrak{a})\ ,</math> with <math>\dim\mathfrak{a}<\infty\ .</math>
Then <math>\mathfrak{a}=\mathfrak{a}_0\oplus\mathfrak{a}_1\ ,</math> where <math>\mathfrak{a}_i</math> is invariant under <math>\alpha</math> and <math>\mathfrak{g}\ .</math>
Moreover, of one denotes the restriction of <math>\alpha</math> to <math>\mathfrak{a}_i</math> by <math>\alpha_i\ ,</math> one has that <math>\alpha_0</math> is nilpotent and <math>\alpha_1</math> is invertible.
One has s decreasing sequence of subspaces
- <math> \mathfrak{a}\supset \alpha\mathfrak{a}\supset \alpha^2 \mathfrak{a}\supset\cdots</math>
Since <math>\mathfrak{a}</math> is finite-dimensional, this stabilizes, say at <math>k\ .</math>
Define <math>\mathfrak{a}_1=\alpha^k \mathfrak{a}\ .</math>
This is <math>\alpha</math>-invariant by construction, and <math>\mathfrak{g}</math>-invariant since <math>\alpha</math> commutes with the <math>\mathfrak{g}</math>-action on <math>\mathfrak{a}\ .</math>
Let <math>\mathfrak{\beta}_i=\ker \alpha^i\ .</math>
Then
- <math>\mathfrak{b}_0\subset\mathfrak{b}_1\subset\cdots\subset\mathfrak{a}</math>
Let <math>m=\max(k,l)\ .</math>
Then
- <math> \mathfrak{a}_0=\ker \alpha^m,\quad \mathfrak{a}_1=\mathrm{im}\alpha^m</math>
Then <math>\alpha^m x=\alpha^{2m} y</math> for some <math>y\in\mathfrak{a}\ ,</math> since <math>\alpha^m\mathfrak{a}=\alpha^{2m}\mathfrak{a}\ .</math>
Write <math>x=(x-\alpha^my)+\alpha^m y\in\ker \alpha^m+\mathrm{im}\alpha^m\ .</math>
This implies
- <math>\mathfrak{a}=\mathfrak{a}_0+\mathfrak{a}_1</math>
This implies that <math>z=\alpha^m w</math> and <math>\alpha^m z=0\ .</math>
It follows that, since <math>\alpha^{2m}w=0\ ,</math> <math>w\in\mathfrak{a}_0\ .</math>
Therefore <math>\alpha^mw=0\ ,</math> or, in other words, <math> z=0\ .</math> This shows that <math>\mathfrak{a}_0\cap\mathfrak{a}_1=0</math> and
- <math>\mathfrak{a}=\mathfrak{a}_0\oplus\mathfrak{a}_1</math>
Denote the projections of <math>\mathfrak{a}\rightarrow\mathfrak{a}_i</math> by <math>\pi_i^0</math> and observe they commute with the <math>\mathfrak{g}</math>-action.
The decomposition <math>\mathfrak{a}=\mathfrak{a}_0\oplus\mathfrak{a}_1</math> is called the Fitting decomposition of <math>\mathfrak{a}</math> with respect to <math>\alpha\ .</math>
Let <math>d_1</math> be a representation.
Suppose there exists a nondegenerate trace form <math>\tilde{K}_\mathfrak{a}\ .</math>
Let <math>\mathfrak{a}_0\oplus\mathfrak{a}_1</math> be the Fitting decomposition with respect to <math>\gamma\ .</math>
Then <math>H^m(\tilde{\mathfrak{g}},\mathfrak{a})=H^m(\tilde{\mathfrak{g}},\mathfrak{a}_0)\ .</math>
Contrary to the usual statement of this theorem, the forms do not need to be antisymmetric.
Consider the Fitting decomposition of <math>\mathfrak{a}</math> with respect to <math>\gamma\ .</math> Take <math>[\zeta_m]\in H^m(\tilde{\mathfrak{g}},\mathfrak{a})</math> and let
- <math>\pi^m\zeta_m=(-1)^{m-1}\gamma^m\omega_m</math>
- <math>0=\pi^{m+1}d^m\zeta_m=d^m\pi^m\zeta_m=(-1)^{m-1}d^m \gamma^m\omega_m=(-1)^{m-1}\gamma^{m+1}d^m \omega_m</math>
Then define
- <math> \mu_{m-1}(x_1,\cdots,x_{m-1})=\sum_{i=1}^n d_1(e^i)\omega_m(x_1,\cdots,x_{m-1},e_i)</math>
- <math>0=\sum_{i=1}^n d_1(e^i)d^m\omega_m(x_1,\dots,x_m,e_i)\ :</math>
- <math>=\sum_{i=1}^n (-1)^{m} d_1(e^i)d_1(e_i) \omega_m(x_1,\dots,x_{m})\ :</math>
- <math>+\sum_{k=1}^{m}\sum_{i=1}^n(-1)^{k-1} d_1(e^i) d_1(x_k) \omega_m(x_1,\dots,\hat{x}_k,\dots,x_m,e_i)\ :</math>
- <math>-\sum_{k=1}^{m}\sum_{i=1}^n (-1)^{k-1} d_1(e^i)\omega_m(x_1,\dots,\hat{x}_k,\dots,[x_k,e_i])\ :</math>
- <math>-\sum_{k=1}^{m}\sum_{l=1}^{k-1}\sum_{i=1}^n(-1)^{l-1} d_1(e^i) \omega_m(x_1,\dots,\hat{x}_l,\dots,[x_l,x_k],\dots,e_i)\ :</math>
- <math>=(-1)^m\gamma\omega_m(x_1,\dots,x_{m})\ :</math>
- <math>+\sum_{k=1}^{m}\sum_{i=1}^n(-1)^{k-1} d_1(x_k) d_1(e^i)\omega_m(x_1,\dots,\hat{x}_k,\dots,x_m,e_i)\ :</math>
- <math>-\sum_{k=1}^{m}\sum_{l=1}^{k-1}\sum_{i=1}^n(-1)^{l-1} d_1(e^i) \omega_m(x_1,\dots,\hat{x}_l.\dots,[x_l,x_k],\dots,e_i)\ :</math>
- <math>-\sum_{k=1}^{m}\sum_{i=1}^n(-1)^{k-1} d_1([x_k,e^i])\omega_m(x_1,\dots,\hat{x}_k,\dots,e_i)\ :</math>
- <math>-\sum_{k=1}^{m}\sum_{i=1}^n (-1)^{k-1} d_1(e^i)\omega_m(x_1,\dots,\hat{x}_k,\dots,[x_k,e_i])\ :</math>
- <math>=-\pi^m\zeta_m(x_1^1,\dots,x_{m}^m)+d^{m-1}\mu_{m-1}(x_1,\dots,x_m)\ :</math>
- <math>+\sum_{k=1}^{m}\sum_{i=1}^n \sum_{p=1}^n(-1)^{k-1} K_\mathfrak{a}(x_k,[e_p,e^i])d_1(e^p)\omega_m(x_1,\dots,\hat{x}_k,\dots,x_m,e_i)\ :</math>
- <math>-\sum_{k=1}^{m}\sum_{i=1}^n \sum_{p=1}^n (-1)^{k-1}K_\mathfrak{a}(x_k,[e_i,e^p]) d_1(e^i)\omega_m(x_1,\dots,\hat{x}_k.\dots,x_m,e_p)\ :</math>
- <math>=-\pi^m\zeta_m(x_1^1,\dots,x_{m}^m)+d^{m-1}\mu_{m-1}(x_1,\dots,x_m)</math>
Let <math>M=\dim(\mathfrak{a}_0)\ .</math> Then <math>H^m(\tilde{\mathfrak{g}},\mathfrak{a}_0)=\bigoplus_{\iota=1}^M H^m(\tilde{\mathfrak{g}},\mathbb{C})\ .</math>
Since <math>\gamma_0=\gamma|\mathfrak{a}_0</math> is nilpotent, its trace on <math>\mathfrak{a}_0</math> is zero.
But this implies that the representation vanishes on <math>\mathfrak{a}_0\ ,</math> since <math>\mathrm{tr\ }\gamma_0=n\ ,</math> where <math> n</math> is the number of basis vectors <math>e_\iota</math> of <math>\mathfrak{a}_0</math> such that <math>d_1(e_\iota)\neq 0\ .</math>
Therefore <math>H^m(\tilde{\mathfrak{g}},\mathfrak{a}_0)=\bigoplus_{\iota=1}^M H^m(\tilde{\mathfrak{g}},\mathbb{C})\ ,</math> where the action of <math>\tilde{\mathfrak{g}}</math> on <math>\mathbb{C}</math> is supposed to be trivial, as usual.
Let <math>d_1</math> be a nontrivial representation, such that <math>\mathfrak{a}</math> is irreducible, that is, it contains no <math>\mathfrak{g}</math>-invariant subspaces.
Suppose there exists a nondegenerate trace form <math>\tilde{K}_\mathfrak{a}\ .</math>
Then <math>H^m(\tilde{\mathfrak{g}},\mathfrak{a})=0\ .</math>
Since the representation is irreducible, one has either <math>\mathfrak{a}=\mathfrak{a}_0</math> or <math>\mathfrak{a}=\mathfrak{a}_1\ .</math>
But in the first case the representation would be trivial, which is excluded.
Therefore one is in the second case and the statement follows.
If <math>[\tilde{\mathfrak{g}},\tilde{\mathfrak{g}}]=\tilde{\mathfrak{g}}</math> then <math>H^1(\tilde{\mathfrak{g}},\mathbb{C})=0\ .</math>
Since the representation is trivial, <math> d^1\omega^1=0</math> implies <math>\omega^1([x,y])=0</math> for all <math>x,y\in\tilde{\mathfrak{g}}\ .</math>
But this implies that <math> \omega^1(z)=0</math> for all <math> z\in\tilde{\mathfrak{g}}\ ,</math> since every <math>z</math> can be written as a finite linear combination of commutators.
It follows that <math>\omega^1=0</math> and therefore trivial (with the representation zero, the only way a one form can be trivial is by being zero).
Suppose there exists a nondegenerate trace form <math>\tilde{K}_\mathfrak{a}</math> and <math>[\tilde{\mathfrak{g}},\tilde{\mathfrak{g}}]=\tilde{\mathfrak{g}}\ .</math>
Let <math>M=\dim(\mathfrak{a}_0)\ .</math>
Then <math>H^1(\tilde{\mathfrak{g}},\mathfrak{a})=H^1(\tilde{\mathfrak{g}},\mathfrak{a}_0)=\bigoplus_{\iota=1}^{M} H^1(\tilde{\mathfrak{g}},\mathbb{C})=0\ .</math>
Define the lower central series of a Lie algebra by <math>\mathfrak{g}^0=\mathfrak{g}</math> and <math>\mathfrak{g}^{i+1}=[\mathfrak{g},\mathfrak{g}^i]\ .</math>
The <math>\mathfrak{g}^i</math> are ideals of <math>\mathfrak{g}\ .</math>
For <math> i=0</math> this is trivial. Suppose <math>\mathfrak{g}^i</math> is an ideal. Then
- <math>[\mathfrak{g},\mathfrak{g}^{i+1}]=[\mathfrak{g},[\mathfrak{g},\mathfrak{g}^i]]\subset [\mathfrak{g},\mathfrak{g}^i]=\mathfrak{g}^{i+1}</math>
<math>\mathfrak{g}</math> is called nilpotent if there is an <math>n\in\mathbb{N}</math> such that <math>\mathfrak{g}^n=0\ .</math>
A nilpotent Lie algebra is solvable, but a solvable Lie algebra need not be nilpotent.
The first part follows from <math>\mathfrak{g}^{(i)}\subset \mathfrak{g}^i\ .</math> An algebra that is solvable bit not nilpotent is the Lie algebra of upper triangular matrices in <math>\mathfrak{gl}_n\ .</math>
If <math>\mathfrak{g}</math> is nilpotent, then so are all subalgebras and homomorphic images.
Let <math> \mathfrak{h}</math> be a subalgebra. Then <math> \mathfrak{h}^{0}\subset\mathfrak{g}^{0}\ .</math> Assume <math>\mathfrak{h}^{i}\subset\mathfrak{g}^{i}\ .</math> Then
- <math> \mathfrak{h}^{i+1}=[\mathfrak{g},\mathfrak{h}^{i}]\subset [\mathfrak{g},\mathfrak{g}^{i}]=\mathfrak{g}^{i+1}</math>
- <math>\phi(\mathfrak{g}^{i+1})=\phi([\mathfrak{g},\mathfrak{g}^{i}])=[\phi(\mathfrak{g}),\phi(\mathfrak{g}^{i})]=
Let <math>\mathcal{Z}(\mathfrak{g})</math> denote the center of <math>\mathfrak{g}\ ,</math> that is,
- <math>\mathcal{Z}(\mathfrak{g})=\{x\in \mathfrak{g}|[x,y]=0 \quad \forall y\in\mathfrak{g}\}</math>
Say <math>\mathfrak{g}^n\subset \mathcal{Z}(\mathfrak{g})\ ,</math> then <math>\mathfrak{g}^{n+1}=[\mathfrak{g},\mathfrak{g}^{n}]\subset [\mathfrak{g},\mathcal{Z}(\mathfrak{g})]=0\ .</math>
If <math>\mathfrak{g}</math> is nilpotent and nonzero, then so is <math>\mathcal{Z}(\mathfrak{g})\neq 0\ .</math>
Let <math> n </math> be the minimal order such that <math>\mathfrak{g}^n=0\ ,</math> then <math>\mathfrak{g}^{n-1}\subset \mathcal{Z}(\mathfrak{g})\ .</math>
If <math>x\in \mathfrak{gl}(V)</math> is nilpotent, then <math> \mathrm{ad}(x) </math> is nilpotent. In particular, if <math>x^n=0</math> then <math>\mathrm{ad}^{2n}(x)=0\ .</math>
Define <math>\lambda_x, \rho_x\in\mathrm{End}(\mathrm{End}(V))</math> by
- <math> \lambda_x y=xy,\quad \rho_x y=yx</math>
Let <math>\mathfrak{g}</math> be a subalgebra of <math>\mathfrak{gl}(V)\ ,</math> with <math>0<\dim V<\infty\ .</math> If <math>\mathfrak{g}</math> consists of nilpotent endomorphisms, then there exists <math>0\neq v\in V</math> such that <math>d^{(0)}(\mathfrak{g})v=0\ .</math>
The proof is by induction on <math>\dim\mathfrak{g}\ .</math> The statement is obvious if the dimension is zero, since any <math>v\in V</math> will do.
Suppose <math>\mathfrak{h}</math> is a subalgebra of <math>\mathfrak{g}\ .</math>
Then <math>\mathfrak{h}</math> acts via <math>\mathrm{ad}</math> as a Lie algebra of nilpotent linear transformations on <math>\mathfrak{g}\ ,</math> and therefore on <math>\mathfrak{g}/\mathfrak{h}\ .</math>
Since <math>\dim\mathfrak{h}<\dim\mathfrak{g}</math> one can use the induction hypothesis to conclude that there exists a vextor <math>x+\mathfrak{h}\ ,</math> <math> x\notin \mathfrak{h}\ ,</math> such that <math>[y,x]=0</math> for any <math>y\in \mathfrak{h}\ .</math>
Thus <math>\mathfrak{h}</math> is properly contained in its normalizer
- <math> N_\mathfrak{g}(\mathfrak{h})=\{x\in\mathfrak{g}|[x,\mathfrak{h}]\subset\mathfrak{h}\}</math>
Take <math>0\neq x\in\mathfrak{g}/\mathfrak{h}</math> and let <math>\mathfrak{x}</math> be the subalgebra generated by <math>x\ .</math>
Then the inverse image of <math>\mathfrak{x}</math> in <math>\mathfrak{g}</math> is a subalgebra properly containing <math>\mathfrak{h}\ ,</math> that is, it is <math>\mathfrak{g}\ .</math>
This only makes sense if there is basically one such <math>x\ ,</math> and it follows that <math>\dim\mathfrak{g}/\mathfrak{h}=1\ .</math> One writes
- <math> \mathfrak{g}=\mathfrak{h}+ \mathbb{C} x\ .</math>
- <math>d_1(y)d_1(x)w=d_1(x)d_1(y)w-d_1([x,y])w=0\ .</math>
Then (since <math>\dim\mathfrak{x}=1</math>) there exists a nonzero <math> v\in\mathcal{W}</math> such that <math>d_1(x)v=0\ .</math> This implies that <math>d_1(\mathfrak{g})v=0\ ,</math> as desired.
If all all elements of <math>\mathfrak{g}</math> are ad-nilpotent, then <math>\mathfrak{g}</math> is nilpotent.
Identifying <math>\mathrm{ad\ }(x)</math> with a nilpotent element in <math>\mathrm{End}(\mathfrak{g})\ ,</math> one conludes to the existence of an <math>x\in\mathfrak{g}</math> such that <math>\mathrm{ad\ }(\mathfrak{g})x=0\ ,</math> that, <math>x\in \mathcal{Z}(\mathfrak{g})\neq 0\ .</math>
Then <math>\mathfrak{g}/\mathcal{Z}(\mathfrak{g})</math> again consists of ad-nilpotent elements and <math>\dim \mathfrak{g}/\mathcal{Z}(\mathfrak{g})< \dim \mathfrak{g}\ .</math>
Using induction on the dimension, one concludes that <math>\mathfrak{g}/\mathcal{Z}(\mathfrak{g})</math> is nilpotent.
It follows that <math>\mathfrak{g}</math> is nilpotent.
If <math>\mathfrak{g}</math> is solvable, then <math>[\mathfrak{g},\mathfrak{g}]</math> is nilpotent.
Let <math>\mathfrak{g}</math> be nilpotent and <math>\mathfrak{h}</math> a nonzero ideal of <math>\mathfrak{g}\ .</math> Then <math>\mathfrak{h}\cap\mathcal{Z}(\mathfrak{g})\neq 0</math> (and in particular, <math>\mathcal{Z}(\mathfrak{g})\neq 0</math>).
If <math>\mathfrak{g}^n=0</math> then <math> (\mathrm{ad\ }(x))^n=0\ .</math> Consider <math> \mathfrak{h}</math> as the representation space (with <math>d^{(0)}=\mathrm{ad}</math>). Then there exist an element <math>h\in\mathfrak{h}</math> such that
- <math> ad(\mathfrak{g})h=0\ .</math>
As remarked in the beginning of this lecture, at this point we need our field to have characteristic zero and we also assume it to be closed.
One calls <math>x\in\mathrm{End}(\mathfrak{a})</math> semisimple if the roots of its minimal polynomial over <math>\mathbb{C}</math> are all distinct.
This is equivalent to saying that <math> x</math> is diagonizable, since one can take its eigenvectors as a basis of <math>\mathfrak{a}\ .</math>
(In we work in a general field, one requires here that the roots of the minimal polynomial are contained in the field; such a field is called a splitting field relative to <math>x\ .</math>)
If two endomorphisms commute, they can be simultaneously diagonalized.
A semisimple endomorphism remains semisimple when restricted to an invariant subspace.
Let <math>\mathfrak{a}</math> be a finite dimensional vectorspace over <math>\mathbb{C}\ ,</math> <math>x\in\mathrm{End}(\mathfrak{a})\ .</math>
There exist unique <math>x_s, x_n\in\mathrm{End}(\mathfrak{a})</math> such that <math>x=x_s+x_n\ ,</math> <math>x_s</math> is semisimple, <math>x_n</math> is nilpotent and <math>x_s</math> and <math>x_n</math> commute.
Let <math> \lambda_1,\cdots,\lambda_k</math> be the distinct eigenvalues of <math>x</math> with multiplicities <math>m_1,\cdots,m_k\ .</math> Its characteristic polynomial is then <math>\chi(\lambda)=\prod_{i=1}^k (\lambda-\lambda_i)^{m_i}\ .</math> Let <math> V_i=\mathrm{ker} (x-\lambda_i)^{m_i}\ ,</math> then <math>V=\bigoplus_{i=1}^k V_i\ .</math>
Using the Chinese Remainder Theorem we find a polynomial <math>p(\lambda)</math> such that <math>p(\lambda)=\lambda_i \mathrm{\ mod\ } (\lambda-\lambda_i)^{m_i}</math> and <math>p(\lambda)=0 \mathrm{\ mod\ } \lambda\ .</math>
Let <math>q(\lambda)=\lambda-p(\lambda)\ .</math>
Then put <math>x_s=p(x)</math> and <math>x_n=q(x)\ .</math> Since both are polynomial in <math>x\ ,</math> they commute.
One has <math>x_s-\lambda_i |V_i=0\ ,</math> that is, <math>x_s</math>acts diagonally on <math>V\ ,</math> since on each <math>V_i</math> the characteristic polynomial is <math>(\lambda-\lambda_i)^{m_i}\ .</math>
Furthermore <math>x_n=x-x_s</math> is nilpotent, since on each <math>V_i</math> it obeys its own characteristic equation <math> x_n^{m_i}=0\ ,</math> so with <math>m=\mathrm{max}_{i=1,\ldots,k}m_i</math> one has <math>x_n^m=0\ .</math>
Any other such decomposition <math>x=s+n</math> would lead to <math>x_s-s=n-x_n\ .</math> Since <math>s</math> and <math>n</math> commute, they also commute with <math>x</math> and therefore with <math>x_s</math> and <math>x_n\ .</math>
Since the sum of commuting semisimple operators is semisimple and the sum of nilpotent operators nilpotent, and the only operator that is both semisimple and nilpotent is <math>0\ ,</math> one must conclude that <math>s=x_s</math> and <math>n=x_n\ .</math>
<math>\mathrm{Der}(\mathfrak{g})</math> contains the semisimple and nilpotent parts in <math>\mathrm{End}(\mathfrak{g})</math> of its elements.
If <math>\delta\in \mathrm{Der}(\mathfrak{g})\ ,</math> let <math>\delta_s, \delta_n\in \mathrm{End}(\mathfrak{g})</math> be its semisimple and nilpotent part, respectively. We show that <math>\delta_s\in \mathrm{Der}(\mathfrak{g})\ .</math>
For <math>\lambda\in\mathbb{C}\ ,</math> let <math>\mathfrak{g}_\lambda=\left\{x\in\mathfrak{g}|(\delta-\lambda)^k x=0\mathrm{\ for\ some\ } k \right\}\ .</math> Then <math>\delta_s</math> acts on <math>\mathfrak{g}_\lambda</math> by multiplication by <math>\lambda\ .</math>
One verifies that <math>[\mathfrak{g}_\lambda,\mathfrak{g}_\mu]\subset\mathfrak{g}_{\lambda+\mu}\ :</math>
One has <math>(\delta-(\lambda+\mu))^n[x,y]=\sum_{i=0}^n\binom{n}{i}[(\delta-\lambda)^{n-i}]\ .</math>
Indeed, for <math>n=1</math> this reads <math>(\delta-(\lambda+\mu))[x,y]=[\delta]+[x,\delta]-(\lambda+\mu)[x,y]=[(\delta-\lambda)]+[x,(\delta-\mu)]</math> and the general inductive step is now standard.
Thus one has <math>\delta_s[x,y]=[\delta_s]+[x,\delta_s]</math> for <math>x\in\mathfrak{g}_\lambda, y\in \mathfrak{g}_\mu\ .</math>
Since <math>\mathfrak{g}=\bigoplus_\lambda \mathfrak{g}_\lambda\ ,</math> it follows that <math>\delta_s</math> is a derivation.
Define a representation of <math>\tilde{\mathfrak{g}}</math> on <math>\tilde{\mathfrak{g}}'=C^1(\tilde{\mathfrak{g}},\mathbb{C})</math> as follows:
- <math>(b_1(x)c_1)(y)=-c_1([x,y])</math>
- <math> (b_1([x,y])c_1)(z)=-c_1(<a href="x,y],z])\ :</math> :&lt;math&gt;=&#45;c_1(&#91;x,&#91;y,z&#93;&#93;)+c_1(&#91;y,&#91;x,z&#93;&#93;)\ :&lt;/math&gt; :&lt;math&gt;=(b_1(x)c_1)(&#91;y,z&#93;)&#45;(b_1(y)c_1)(&#91;x,z&#93;)\ :&lt;/math&gt; :&lt;math&gt;= &#45;(b_1(y)b_1(x)c_1)(z)+(b_1(x)b_1(y)c_1)(z)\ :&lt;/math&gt; :&lt;math&gt;=(&#91;b_1(x),b_1(y)&#93;c_1)(z)&lt;/math&gt; === lemma === Let &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; be a Lie algebra. Suppose there exists a nondegenerate trace form &lt;math&gt;K_&#123;\tilde&#123;\mathfrak&#123;g&#125;&#125;'&#125;\ .&lt;/math&gt; If &lt;math&gt;&#91;\tilde&#123;\mathfrak&#123;g&#125;&#125;,\tilde&#123;\mathfrak&#123;g&#125;&#125;&#93;=\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; then &lt;math&gt;H^2(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\mathbb&#123;C&#125;)=0\ .&lt;/math&gt; === remark === The following proofs rely on the fact that &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; is semisimple. This is proved in the literature, but not yet in these notes. Alternatively, one could require that &lt;math&gt;H^1(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\cdot)=0\ .&lt;/math&gt; === proof === Let for &lt;math&gt;m\geq 1&lt;/math&gt; a map &lt;math&gt;\phi^m:C^m(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\mathbb&#123;C&#125;)\rightarrow C^&#123;m&#45;1&#125;(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\tilde&#123;\mathfrak&#123;g&#125;&#125;')&lt;/math&gt; be given by :&lt;math&gt; (\phi^m u_m)(x_1,\dots,x_&#123;m&#45;1&#125;)(x)=u_m(x_1,\dots,x_&#123;m&#45;1&#125;,x)&lt;/math&gt; Since :&lt;math&gt; &#91;(b^&#123;m&#45;1&#125;\phi^m&#93;(x)=\ :&lt;/math&gt; :&lt;math&gt;&lt;/math&gt;=\sum_{i=1}^m (-1)^{i-1} b_1(x_i) \phi^m u_m (x_1,\dots,\hat{x}_i,\dots,x_m)(x)-\sum_{i&lt;j&#125;(&#45;1)^&#123;i&#45;1&#125; \phi^m&gt;&lt;/j&#125;(&#45;1)^&#123;i&#45;1&#125; \phi^m&gt; :&lt;math&gt;&lt;/math&gt; =-\sum_{i=1}^m (-1)^{i-1} u_m (x_1,\dots,\hat{x}_i,\dots,x_m,[x_i,x])-\sum_{i&lt;j&#125;(&#45;1)^&#123;i&#45;1&#125; u_m&gt;&lt;/j&#125;(&#45;1)^&#123;i&#45;1&#125; u_m&gt; :&lt;math&gt; = &#45; d^m u_m (x_1,\dots,x_m,x)\ :&lt;/math&gt; :&lt;math&gt; =&#45; &#91;\phi^&#123;m+1&#125;&#93;(x)&lt;/math&gt; This implies that &lt;math&gt;b^&#123;m&#45;1&#125;\phi^m=&#45;\phi^&#123;m+1&#125; d^m&lt;/math&gt; and in particular that &lt;math&gt;\phi^m:Z^m(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\mathbb&#123;C&#125;)\rightarrow Z^&#123;m&#45;1&#125;(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\tilde&#123;\mathfrak&#123;g&#125;&#125;')\ .&lt;/math&gt; Take &lt;math&gt;\omega_2\in Z^2(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\mathbb&#123;C&#125;)\ .&lt;/math&gt; Then &lt;math&gt;b^1 \phi^2\omega_2 =0\ .&lt;/math&gt; It follows from the assumptions that &lt;math&gt;H^1( \tilde&#123;\mathfrak&#123;g&#125;&#125;,\tilde&#123;\mathfrak&#123;g&#125;&#125;')=0\ .&lt;/math&gt; This implies that there exists a &lt;math&gt; \beta_1\in C^&#123;0&#125;(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\tilde&#123;\mathfrak&#123;g&#125;&#125;')=\tilde&#123;\mathfrak&#123;g&#125;&#125;'&lt;/math&gt; such that &lt;math&gt;\phi\omega_2=b\beta_1&lt;/math&gt; and :&lt;math&gt;\omega_2(x,y)= \phi^2\omega_2(x)(y)=b\beta_1(x)(y)=b_1(x)\beta_1(y)=&#45;\beta_1(&#91;x,y&#93;)=d^1\beta_1(x,y)&lt;/math&gt; This proves that &lt;math&gt;\omega_2=d^1\beta_1\ .&lt;/math&gt; === remark === These cohomology results were obtained by Whitehead in the antisymmetric case. There is not an analogous result for &lt;math&gt;H_&#123;\wedge&#125;^3(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\mathbb&#123;C&#125;)\ .&lt;/math&gt; This is related to the fact that &lt;math&gt;&#91;d^2&#93;\in H_&#123;\wedge&#125;^3(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\mathbb&#123;C&#125;)\ .&lt;/math&gt; === theorem (Weyl) === Suppose &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; and &lt;math&gt;\mathfrak&#123;a&#125;&lt;/math&gt; are finite dimensional. If &lt;math&gt;&#91;\tilde&#123;\mathfrak&#123;g&#125;&#125;,\tilde&#123;\mathfrak&#123;g&#125;&#125;&#93;=\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; then &lt;math&gt;\mathfrak&#123;a&#125;&lt;/math&gt; is completely reducible, that is, if &lt;math&gt;\mathfrak&#123;b&#125;&lt;/math&gt; is a &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt;-invariant subspace of &lt;math&gt;\mathfrak&#123;a&#125;\ ,&lt;/math&gt; then there exists a &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt;-invariant direct summand to &lt;math&gt;\mathfrak&#123;b&#125;\ .&lt;/math&gt; === proof === Let &lt;math&gt;\mathfrak&#123;b&#125;&lt;/math&gt; be a &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt;-invariant subspace of &lt;math&gt;\mathfrak&#123;a&#125;\ .&lt;/math&gt; The idea of the proof is as follows. Let &lt;math&gt;P_\mathfrak&#123;b&#125;&lt;/math&gt; be the projector on &lt;math&gt;\mathfrak&#123;b&#125;\ .&lt;/math&gt; If &lt;math&gt;P_\mathfrak&#123;b&#125;&lt;/math&gt; commutes with the &lt;math&gt;\mathfrak&#123;g&#125;&lt;/math&gt;-action, we are done, since then we find a direct summand by letting &lt;math&gt;1&#45;P_\mathfrak&#123;b&#125;&lt;/math&gt; act on &lt;math&gt;\mathfrak&#123;a&#125;\ .&lt;/math&gt; To make &lt;math&gt;P_\mathfrak&#123;b&#125;&lt;/math&gt; commute with the action, one perturbs it with another map &lt;math&gt;c^0\ .&lt;/math&gt; In order for &lt;math&gt;P_\mathfrak&#123;b&#125;+c^0&lt;/math&gt; to be a projection on &lt;math&gt;\mathfrak&#123;b&#125;&lt;/math&gt; one needs that &lt;math&gt;\mathrm&#123;im\ &#125;c^0 \subset \mathfrak&#123;b&#125;&lt;/math&gt; and &lt;math&gt;\mathfrak&#123;b&#125;\subset \ker c^0&lt;/math&gt; (since &lt;math&gt;P_\mathfrak&#123;b&#125;&lt;/math&gt; is the identity on &lt;math&gt;\mathfrak&#123;b&#125;&lt;/math&gt;). These considerations lead to the following definition. Define &lt;math&gt;\mathcal&#123;W&#125;&lt;/math&gt; to be the space of all &lt;math&gt;A\in\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&lt;/math&gt; such that :&lt;math&gt; \mathrm&#123;im\ &#125;A\subset \mathfrak&#123;b&#125;\subset \ker A\ .&lt;/math&gt; Then &lt;math&gt;\mathcal&#123;W&#125;&lt;/math&gt; is a subspace: Let &lt;math&gt;a\in \mathfrak&#123;a&#125;, b\in\mathfrak&#123;b&#125;&lt;/math&gt; and &lt;math&gt;A,B \in \mathcal&#123;W&#125;\ .&lt;/math&gt; Then &lt;math&gt;(A+B)b = Ab +Bb=0&lt;/math&gt; and &lt;math&gt; (A+B)a=Aa+Ab \in \mathfrak&#123;b&#125;\ .&lt;/math&gt; Define a representation &lt;math&gt;\delta_1&lt;/math&gt; of &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; on &lt;math&gt;\mathcal&#123;W&#125;&lt;/math&gt; by :&lt;math&gt; \delta_1(x)A=&#91;d_1,A&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;&lt;/math&gt; Let &lt;math&gt;P_\mathfrak&#123;b&#125;&lt;/math&gt; be a projector on &lt;math&gt;\mathfrak&#123;b&#125;&lt;/math&gt; as a vectorspace. Then &lt;math&gt;&#91;d_1(x),P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;&#125;\in \mathcal&#123;W&#125;\ .&lt;/math&gt; Therefore &lt;math&gt; c^1\ ,&lt;/math&gt; defined by :&lt;math&gt; c^1(x)=&#91;d_1(x),P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;&lt;/math&gt; is a linear map from &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; to &lt;math&gt;\mathcal&#123;W&#125;\ ,&lt;/math&gt; that is, &lt;math&gt;c^1\in C^1(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\mathcal&#123;W&#125;)\ .&lt;/math&gt; Observe that one cannot say: &lt;math&gt;c^1=\delta P_\mathfrak&#123;b&#125;&lt;/math&gt; for the simple reason that &lt;math&gt;P_\mathfrak&#123;b&#125;\notin\mathcal&#123;W&#125;\ .&lt;/math&gt; Then :&lt;math&gt; \delta^1 c^1(x,y)=\delta_1(x)c^1(y)&#45;\delta_1(y)c^1(x)&#45;c^1(&#91;x,y&#93;)\ :&lt;/math&gt; :&lt;math&gt;=\delta_1(x)&#91;d^&#123;(0)&#125;(y),P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;&#45;\delta^&#123;(0)&#125;(y)&#91;d_1(x),P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125; &#45;&#91;d_1(&#91;x,y&#93;),P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;\ :&lt;/math&gt; :&lt;math&gt;=&#91;d_1(x),&#91;d_1(y),P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125; &#45;&#91;d_1(y),&#91;d_1(x),P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125; &#45;&#91;d_1(&#91;x,y&#93;),P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;\ :&lt;/math&gt; :&lt;math&gt;=&lt;a href=&quot;d_1(x),d_1(y)&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;,P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;&amp;#10;&#45;&#91;d_1(&#91;x,y&#93;),P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;\ :&amp;lt;/math&amp;gt;&amp;#10;:&amp;amp;lt;math&amp;amp;gt;=0&amp;amp;lt;/math&amp;amp;gt;&amp;#10;Since &amp;amp;lt;math&amp;amp;gt;H^1(\tilde&amp;amp;#123;\mathfrak&amp;amp;#123;g&amp;amp;#125;&amp;amp;#125;,\mathcal&amp;amp;#123;W&amp;amp;#125;)=0\ ,&amp;amp;lt;/math&amp;amp;gt; one has &amp;amp;lt;math&amp;amp;gt;c^1=\delta c^0\ .&amp;amp;lt;/math&amp;amp;gt;&amp;#10;Then, with &amp;amp;lt;math&amp;amp;gt;\mathcal&amp;amp;#123;P&amp;amp;#125;_\mathfrak&amp;amp;#123;b&amp;amp;#125;=P_\mathfrak&amp;amp;#123;b&amp;amp;#125;&amp;amp;#45;c^0\ ,&amp;amp;lt;/math&amp;amp;gt;&amp;#10;:&amp;amp;lt;math&amp;amp;gt;&amp;amp;#91;d_1(x),\mathcal&amp;amp;#123;P&amp;amp;#125;_\mathfrak&amp;amp;#123;b&amp;amp;#125;&amp;amp;#93;=c^1(x)&amp;amp;#45;\delta_1(x)c^0=c^1(x)&amp;amp;#45;\delta c^0(x)=0&amp;amp;lt;/math&amp;amp;gt;&amp;#10;One has &amp;amp;lt;math&amp;amp;gt; \mathcal&amp;amp;#123;P&amp;amp;#125;_\mathfrak&amp;amp;#123;b&amp;amp;#125;a\in \mathfrak&amp;amp;#123;b&amp;amp;#125;&amp;amp;lt;/math&amp;amp;gt; for &amp;amp;lt;math&amp;amp;gt;a\in\mathfrak&amp;amp;#123;a&amp;amp;#125;&amp;amp;lt;/math&amp;amp;gt; and &amp;#10;&amp;amp;lt;math&amp;amp;gt;\mathcal&amp;amp;#123;P&amp;amp;#125;_\mathfrak&amp;amp;#123;b&amp;amp;#125;b=P_\mathfrak&amp;amp;#123;b&amp;amp;#125;b=b&amp;amp;lt;/math&amp;amp;gt; for &amp;amp;lt;math&amp;amp;gt;b\in\mathfrak&amp;amp;#123;b&amp;amp;#125;\ .&amp;amp;lt;/math&amp;amp;gt;&amp;#10;&amp;#10;The conclusion is that &amp;amp;lt;math&amp;amp;gt; \mathcal&amp;amp;#123;P&amp;amp;#125;_\mathfrak&amp;amp;#123;b&amp;amp;#125;&amp;amp;lt;/math&amp;amp;gt; is a projector on &amp;amp;lt;math&amp;amp;gt;\mathfrak&amp;amp;#123;b&amp;amp;#125;&amp;amp;lt;/math&amp;amp;gt; as a &amp;amp;lt;math&amp;amp;gt;\tilde&amp;amp;#123;\mathfrak&amp;amp;#123;g&amp;amp;#125;&amp;amp;#125;&amp;amp;lt;/math&amp;amp;gt;&#45;module (and therefore &amp;amp;lt;math&amp;amp;gt;(1&amp;amp;#45;\mathcal&amp;amp;#123;P&amp;amp;#125;_\mathfrak&amp;amp;#123;b&amp;amp;#125;) &amp;amp;lt;/math&amp;amp;gt; is a projector on the complementary subspace). &amp;#10;&amp;#10;Since &amp;amp;lt;math&amp;amp;gt;\mathfrak&amp;amp;#123;a&amp;amp;#125;&amp;amp;lt;/math&amp;amp;gt; is finite&#45;dimensional, the result can be proved using induction.&amp;#10;&amp;#10;&amp;#10;=== theorem === &amp;#10;&amp;#10;Suppose &amp;amp;lt;math&amp;amp;gt;\tilde&amp;amp;#123;\mathfrak&amp;amp;#123;g&amp;amp;#125;&amp;amp;#125;&amp;amp;lt;/math&amp;amp;gt; and &amp;amp;lt;math&amp;amp;gt;\mathfrak&amp;amp;#123;a&amp;amp;#125;&amp;amp;lt;/math&amp;amp;gt; are finite dimensional.&amp;#10;&amp;#10;Suppose there exists a nondegenerate trace form &amp;amp;lt;math&amp;amp;gt;K_&amp;amp;#123;\tilde&amp;amp;#123;\mathfrak&amp;amp;#123;g&amp;amp;#125;&amp;amp;#125;'&amp;amp;#125;\ .&amp;amp;lt;/math&amp;amp;gt;&amp;#10;&amp;#10;If &amp;amp;lt;math&amp;amp;gt;&amp;amp;#91;\tilde&amp;amp;#123;\mathfrak&amp;amp;#123;g&amp;amp;#125;&amp;amp;#125;,\tilde&amp;amp;#123;\mathfrak&amp;amp;#123;g&amp;amp;#125;&amp;amp;#125;&amp;amp;#93;=\tilde&amp;amp;#123;\mathfrak&amp;amp;#123;g&amp;amp;#125;&amp;amp;#125;&amp;amp;lt;/math&amp;amp;gt; then any extension of &amp;amp;lt;math&amp;amp;gt;\tilde&amp;amp;#123;\mathfrak&amp;amp;#123;g&amp;amp;#125;&amp;amp;#125;&amp;amp;lt;/math&amp;amp;gt; by &amp;amp;lt;math&amp;amp;gt;\mathfrak&amp;amp;#123;a&amp;amp;#125;&amp;amp;lt;/math&amp;amp;gt; is trivial.&amp;#10;&amp;#10;&amp;#10;=== proof ===&amp;#10;&amp;#10;This follows from the fact that &amp;amp;lt;math&amp;amp;gt;H^2(\tilde&amp;amp;#123;\mathfrak&amp;amp;#123;g&amp;amp;#125;&amp;amp;#125;,\mathfrak&amp;amp;#123;a&amp;amp;#125;)=0\ .&amp;amp;lt;/math&amp;amp;gt;&amp;#10;&amp;#10;&amp;#10;=== references ===&amp;#10;&amp;#10;*&amp;lt;span id=&amp;quot;MR0323842&amp;quot;&amp;gt;&amp;lt;/span&amp;gt;Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer&#45;Verlag, New York&#45;Berlin, 1972. xii+169 pp.&amp;#10;&amp;#10;&amp;#10;On to the ninth lecture&amp;#10;&amp;#10;Back to the seventh lecture&amp;#10;garbage&quot;&gt;d_1(x),d_1(y)&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;,P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125; &#45;&#91;d_1(&#91;x,y&#93;),P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;\ :&lt;/math&gt; :&amp;lt;math&amp;gt;=0&amp;lt;/math&amp;gt; Since &amp;lt;math&amp;gt;H^1(\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;,\mathcal&amp;#123;W&amp;#125;)=0\ ,&amp;lt;/math&amp;gt; one has &amp;lt;math&amp;gt;c^1=\delta c^0\ .&amp;lt;/math&amp;gt; Then, with &amp;lt;math&amp;gt;\mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;=P_\mathfrak&amp;#123;b&amp;#125;&amp;#45;c^0\ ,&amp;lt;/math&amp;gt; :&amp;lt;math&amp;gt;&amp;#91;d_1(x),\mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;&amp;#93;=c^1(x)&amp;#45;\delta_1(x)c^0=c^1(x)&amp;#45;\delta c^0(x)=0&amp;lt;/math&amp;gt; One has &amp;lt;math&amp;gt; \mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;a\in \mathfrak&amp;#123;b&amp;#125;&amp;lt;/math&amp;gt; for &amp;lt;math&amp;gt;a\in\mathfrak&amp;#123;a&amp;#125;&amp;lt;/math&amp;gt; and &amp;lt;math&amp;gt;\mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;b=P_\mathfrak&amp;#123;b&amp;#125;b=b&amp;lt;/math&amp;gt; for &amp;lt;math&amp;gt;b\in\mathfrak&amp;#123;b&amp;#125;\ .&amp;lt;/math&amp;gt; The conclusion is that &amp;lt;math&amp;gt; \mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;&amp;lt;/math&amp;gt; is a projector on &amp;lt;math&amp;gt;\mathfrak&amp;#123;b&amp;#125;&amp;lt;/math&amp;gt; as a &amp;lt;math&amp;gt;\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;&amp;lt;/math&amp;gt;&#45;module (and therefore &amp;lt;math&amp;gt;(1&amp;#45;\mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;) &amp;lt;/math&amp;gt; is a projector on the complementary subspace). Since &amp;lt;math&amp;gt;\mathfrak&amp;#123;a&amp;#125;&amp;lt;/math&amp;gt; is finite&#45;dimensional, the result can be proved using induction. === theorem === Suppose &amp;lt;math&amp;gt;\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;&amp;lt;/math&amp;gt; and &amp;lt;math&amp;gt;\mathfrak&amp;#123;a&amp;#125;&amp;lt;/math&amp;gt; are finite dimensional. Suppose there exists a nondegenerate trace form &amp;lt;math&amp;gt;K_&amp;#123;\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;'&amp;#125;\ .&amp;lt;/math&amp;gt; If &amp;lt;math&amp;gt;&amp;#91;\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;,\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;&amp;#93;=\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;&amp;lt;/math&amp;gt; then any extension of &amp;lt;math&amp;gt;\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;&amp;lt;/math&amp;gt; by &amp;lt;math&amp;gt;\mathfrak&amp;#123;a&amp;#125;&amp;lt;/math&amp;gt; is trivial. === proof === This follows from the fact that &amp;lt;math&amp;gt;H^2(\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;,\mathfrak&amp;#123;a&amp;#125;)=0\ .&amp;lt;/math&amp;gt; === references === *&lt;span id=&quot;MR0323842&quot;&gt;&lt;/span&gt;Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer&#45;Verlag, New York&#45;Berlin, 1972. xii+169 pp. On to the ninth lecture Back to the seventh lecture garbage&lt;/a&gt;d_1(x),d_1(y)&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;,P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125; &#45;&#91;d_1(&#91;x,y&#93;),P_\mathfrak&#123;b&#125;&#93;_&#123;\mathrm&#123;End&#125;(\mathfrak&#123;a&#125;)&#125;\ :&lt;/math&gt; :&lt;math&gt;=0&lt;/math&gt; Since &lt;math&gt;H^1(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\mathcal&#123;W&#125;)=0\ ,&lt;/math&gt; one has &lt;math&gt;c^1=\delta c^0\ .&lt;/math&gt; Then, with &lt;math&gt;\mathcal&#123;P&#125;_\mathfrak&#123;b&#125;=P_\mathfrak&#123;b&#125;&#45;c^0\ ,&lt;/math&gt; :&lt;math&gt;&#91;d_1(x),\mathcal&#123;P&#125;_\mathfrak&#123;b&#125;&#93;=c^1(x)&#45;\delta_1(x)c^0=c^1(x)&#45;\delta c^0(x)=0&lt;/math&gt; One has &lt;math&gt; \mathcal&#123;P&#125;_\mathfrak&#123;b&#125;a\in \mathfrak&#123;b&#125;&lt;/math&gt; for &lt;math&gt;a\in\mathfrak&#123;a&#125;&lt;/math&gt; and &lt;math&gt;\mathcal&#123;P&#125;_\mathfrak&#123;b&#125;b=P_\mathfrak&#123;b&#125;b=b&lt;/math&gt; for &lt;math&gt;b\in\mathfrak&#123;b&#125;\ .&lt;/math&gt; The conclusion is that &lt;math&gt; \mathcal&#123;P&#125;_\mathfrak&#123;b&#125;&lt;/math&gt; is a projector on &lt;math&gt;\mathfrak&#123;b&#125;&lt;/math&gt; as a &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt;-module (and therefore &lt;math&gt;(1&#45;\mathcal&#123;P&#125;_\mathfrak&#123;b&#125;) &lt;/math&gt; is a projector on the complementary subspace). Since &lt;math&gt;\mathfrak&#123;a&#125;&lt;/math&gt; is finite-dimensional, the result can be proved using induction. === theorem === Suppose &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; and &lt;math&gt;\mathfrak&#123;a&#125;&lt;/math&gt; are finite dimensional. Suppose there exists a nondegenerate trace form &lt;math&gt;K_&#123;\tilde&#123;\mathfrak&#123;g&#125;&#125;'&#125;\ .&lt;/math&gt; If &lt;math&gt;&#91;\tilde&#123;\mathfrak&#123;g&#125;&#125;,\tilde&#123;\mathfrak&#123;g&#125;&#125;&#93;=\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; then any extension of &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; by &lt;math&gt;\mathfrak&#123;a&#125;&lt;/math&gt; is trivial. === proof === This follows from the fact that &lt;math&gt;H^2(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\mathfrak&#123;a&#125;)=0\ .&lt;/math&gt; === references === *<span id="MR0323842"></span>Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. xii+169 pp. On to the ninth lecture Back to the seventh lecture garbage">x,y],z])\ :</math>
- <math>=-c_1([x,[y,z]])+c_1([y,[x,z]])\ :</math>
- <math>=(b_1(x)c_1)([y,z])-(b_1(y)c_1)([x,z])\ :</math>
- <math>= -(b_1(y)b_1(x)c_1)(z)+(b_1(x)b_1(y)c_1)(z)\ :</math>
- <math>=([b_1(x),b_1(y)]c_1)(z)</math>
- <math> (\phi^m u_m)(x_1,\dots,x_{m-1})(x)=u_m(x_1,\dots,x_{m-1},x)</math>
- <math> [(b^{m-1}\phi^m](x)=\ :</math>
- <math></math>=\sum_{i=1}^m (-1)^{i-1} b_1(x_i) \phi^m u_m (x_1,\dots,\hat{x}_i,\dots,x_m)(x)-\sum_{i<j}(-1)^{i-1}
- <math></math> =-\sum_{i=1}^m (-1)^{i-1} u_m (x_1,\dots,\hat{x}_i,\dots,x_m,[x_i,x])-\sum_{i<j}(-1)^{i-1}
- <math> = - d^m u_m (x_1,\dots,x_m,x)\ :</math>
- <math> =- [\phi^{m+1}](x)</math>
- <math>\omega_2(x,y)= \phi^2\omega_2(x)(y)=b\beta_1(x)(y)=b_1(x)\beta_1(y)=-\beta_1([x,y])=d^1\beta_1(x,y)</math>
- <math> \mathrm{im\ }A\subset \mathfrak{b}\subset \ker A\ .</math>
- <math> \delta_1(x)A=[d_1,A]_{\mathrm{End}(\mathfrak{a})}</math>
- <math> c^1(x)=[d_1(x),P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}</math>
- <math> \delta^1 c^1(x,y)=\delta_1(x)c^1(y)-\delta_1(y)c^1(x)-c^1([x,y])\ :</math>
- <math>=\delta_1(x)[d^{(0)}(y),P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}-\delta^{(0)}(y)[d_1(x),P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}
- <math>=[d_1(x),[d_1(y),P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}]_{\mathrm{End}(\mathfrak{a})}
- <math>=<a href="d_1(x),d_1(y)]_{\mathrm{End}(\mathfrak{a})},P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}&#10;-[d_1([x,y]),P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}\ :&lt;/math&gt;&#10;:&amp;lt;math&amp;gt;=0&amp;lt;/math&amp;gt;&#10;Since &amp;lt;math&amp;gt;H^1(\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;,\mathcal&amp;#123;W&amp;#125;)=0\ ,&amp;lt;/math&amp;gt; one has &amp;lt;math&amp;gt;c^1=\delta c^0\ .&amp;lt;/math&amp;gt;&#10;Then, with &amp;lt;math&amp;gt;\mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;=P_\mathfrak&amp;#123;b&amp;#125;&amp;#45;c^0\ ,&amp;lt;/math&amp;gt;&#10;:&amp;lt;math&amp;gt;&amp;#91;d_1(x),\mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;&amp;#93;=c^1(x)&amp;#45;\delta_1(x)c^0=c^1(x)&amp;#45;\delta c^0(x)=0&amp;lt;/math&amp;gt;&#10;One has &amp;lt;math&amp;gt; \mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;a\in \mathfrak&amp;#123;b&amp;#125;&amp;lt;/math&amp;gt; for &amp;lt;math&amp;gt;a\in\mathfrak&amp;#123;a&amp;#125;&amp;lt;/math&amp;gt; and &#10;&amp;lt;math&amp;gt;\mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;b=P_\mathfrak&amp;#123;b&amp;#125;b=b&amp;lt;/math&amp;gt; for &amp;lt;math&amp;gt;b\in\mathfrak&amp;#123;b&amp;#125;\ .&amp;lt;/math&amp;gt;&#10;&#10;The conclusion is that &amp;lt;math&amp;gt; \mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;&amp;lt;/math&amp;gt; is a projector on &amp;lt;math&amp;gt;\mathfrak&amp;#123;b&amp;#125;&amp;lt;/math&amp;gt; as a &amp;lt;math&amp;gt;\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;&amp;lt;/math&amp;gt;-module (and therefore &amp;lt;math&amp;gt;(1&amp;#45;\mathcal&amp;#123;P&amp;#125;_\mathfrak&amp;#123;b&amp;#125;) &amp;lt;/math&amp;gt; is a projector on the complementary subspace). &#10;&#10;Since &amp;lt;math&amp;gt;\mathfrak&amp;#123;a&amp;#125;&amp;lt;/math&amp;gt; is finite-dimensional, the result can be proved using induction.&#10;&#10;&#10;=== theorem === &#10;&#10;Suppose &amp;lt;math&amp;gt;\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;&amp;lt;/math&amp;gt; and &amp;lt;math&amp;gt;\mathfrak&amp;#123;a&amp;#125;&amp;lt;/math&amp;gt; are finite dimensional.&#10;&#10;Suppose there exists a nondegenerate trace form &amp;lt;math&amp;gt;K_&amp;#123;\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;'&amp;#125;\ .&amp;lt;/math&amp;gt;&#10;&#10;If &amp;lt;math&amp;gt;&amp;#91;\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;,\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;&amp;#93;=\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;&amp;lt;/math&amp;gt; then any extension of &amp;lt;math&amp;gt;\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;&amp;lt;/math&amp;gt; by &amp;lt;math&amp;gt;\mathfrak&amp;#123;a&amp;#125;&amp;lt;/math&amp;gt; is trivial.&#10;&#10;&#10;=== proof ===&#10;&#10;This follows from the fact that &amp;lt;math&amp;gt;H^2(\tilde&amp;#123;\mathfrak&amp;#123;g&amp;#125;&amp;#125;,\mathfrak&amp;#123;a&amp;#125;)=0\ .&amp;lt;/math&amp;gt;&#10;&#10;&#10;=== references ===&#10;&#10;*&lt;span id=&quot;MR0323842&quot;&gt;&lt;/span&gt;Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. xii+169 pp.&#10;&#10;&#10;On to the ninth lecture&#10;&#10;Back to the seventh lecture&#10;garbage">d_1(x),d_1(y)]_{\mathrm{End}(\mathfrak{a})},P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}
- &lt;math&gt;=0&lt;/math&gt;
- &lt;math&gt;&#91;d_1(x),\mathcal&#123;P&#125;_\mathfrak&#123;b&#125;&#93;=c^1(x)&#45;\delta_1(x)c^0=c^1(x)&#45;\delta c^0(x)=0&lt;/math&gt;
- <span id="MR0323842"></span>Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. xii+169 pp.
- <math>=0</math>
- <math>[d_1(x),\mathcal{P}_\mathfrak{b}]=c^1(x)-\delta_1(x)c^0=c^1(x)-\delta c^0(x)=0</math>
- <span id="MR0323842"></span>Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. xii+169 pp.
- <math>=-c_1([x,[y,z]])+c_1([y,[x,z]])\ :</math>
- <math>=(b_1(x)c_1)([y,z])-(b_1(y)c_1)([x,z])\ :</math>
- <math>= -(b_1(y)b_1(x)c_1)(z)+(b_1(x)b_1(y)c_1)(z)\ :</math>
- <math>=([b_1(x),b_1(y)]c_1)(z)</math>
Let <math>\tilde{\mathfrak{g}}</math> be a Lie algebra. Suppose there exists a nondegenerate trace form <math>K_{\tilde{\mathfrak{g}}'}\ .</math> If <math>[\tilde{\mathfrak{g}},\tilde{\mathfrak{g}}]=\tilde{\mathfrak{g}}</math> then <math>H^2(\tilde{\mathfrak{g}},\mathbb{C})=0\ .</math>
The following proofs rely on the fact that <math>\tilde{\mathfrak{g}}</math> is semisimple.
This is proved in the literature, but not yet in these notes.
Alternatively, one could require that <math>H^1(\tilde{\mathfrak{g}},\cdot)=0\ .</math>
Let for <math>m\geq 1</math> a map <math>\phi^m:C^m(\tilde{\mathfrak{g}},\mathbb{C})\rightarrow C^{m-1}(\tilde{\mathfrak{g}},\tilde{\mathfrak{g}}')</math> be given by
- <math> (\phi^m u_m)(x_1,\dots,x_{m-1})(x)=u_m(x_1,\dots,x_{m-1},x)</math>
- <math> [(b^{m-1}\phi^m](x)=\ :</math>
- <math></math>=\sum_{i=1}^m (-1)^{i-1} b_1(x_i) \phi^m u_m (x_1,\dots,\hat{x}_i,\dots,x_m)(x)-\sum_{i<j}(-1)^{i-1}
- <math></math> =-\sum_{i=1}^m (-1)^{i-1} u_m (x_1,\dots,\hat{x}_i,\dots,x_m,[x_i,x])-\sum_{i<j}(-1)^{i-1}
- <math> = - d^m u_m (x_1,\dots,x_m,x)\ :</math>
- <math> =- [\phi^{m+1}](x)</math>
Take <math>\omega_2\in Z^2(\tilde{\mathfrak{g}},\mathbb{C})\ .</math> Then <math>b^1 \phi^2\omega_2 =0\ .</math>
It follows from the assumptions that <math>H^1( \tilde{\mathfrak{g}},\tilde{\mathfrak{g}}')=0\ .</math>
This implies that there exists a <math> \beta_1\in C^{0}(\tilde{\mathfrak{g}},\tilde{\mathfrak{g}}')=\tilde{\mathfrak{g}}'</math> such that <math>\phi\omega_2=b\beta_1</math> and
- <math>\omega_2(x,y)= \phi^2\omega_2(x)(y)=b\beta_1(x)(y)=b_1(x)\beta_1(y)=-\beta_1([x,y])=d^1\beta_1(x,y)</math>
These cohomology results were obtained by Whitehead in the antisymmetric case.
There is not an analogous result for <math>H_{\wedge}^3(\tilde{\mathfrak{g}},\mathbb{C})\ .</math>
This is related to the fact that <math>[d^2]\in H_{\wedge}^3(\tilde{\mathfrak{g}},\mathbb{C})\ .</math>
Suppose <math>\tilde{\mathfrak{g}}</math> and <math>\mathfrak{a}</math> are finite dimensional. If <math>[\tilde{\mathfrak{g}},\tilde{\mathfrak{g}}]=\tilde{\mathfrak{g}}</math> then <math>\mathfrak{a}</math> is completely reducible, that is, if <math>\mathfrak{b}</math> is a <math>\tilde{\mathfrak{g}}</math>-invariant subspace of <math>\mathfrak{a}\ ,</math> then there exists a <math>\tilde{\mathfrak{g}}</math>-invariant direct summand to <math>\mathfrak{b}\ .</math>
Let <math>\mathfrak{b}</math> be a <math>\tilde{\mathfrak{g}}</math>-invariant subspace of <math>\mathfrak{a}\ .</math> The idea of the proof is as follows.
Let <math>P_\mathfrak{b}</math> be the projector on <math>\mathfrak{b}\ .</math> If <math>P_\mathfrak{b}</math> commutes with the <math>\mathfrak{g}</math>-action, we are done, since then we find a direct summand by letting <math>1-P_\mathfrak{b}</math> act on <math>\mathfrak{a}\ .</math>
To make <math>P_\mathfrak{b}</math> commute with the action, one perturbs it with another map <math>c^0\ .</math>
In order for <math>P_\mathfrak{b}+c^0</math> to be a projection on <math>\mathfrak{b}</math> one needs that <math>\mathrm{im\ }c^0 \subset \mathfrak{b}</math> and <math>\mathfrak{b}\subset \ker c^0</math> (since <math>P_\mathfrak{b}</math> is the identity on <math>\mathfrak{b}</math>).
These considerations lead to the following definition. Define <math>\mathcal{W}</math> to be the space of all <math>A\in\mathrm{End}(\mathfrak{a})</math> such that
- <math> \mathrm{im\ }A\subset \mathfrak{b}\subset \ker A\ .</math>
Define a representation <math>\delta_1</math> of <math>\tilde{\mathfrak{g}}</math> on <math>\mathcal{W}</math> by
- <math> \delta_1(x)A=[d_1,A]_{\mathrm{End}(\mathfrak{a})}</math>
- <math> c^1(x)=[d_1(x),P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}</math>
Observe that one cannot say: <math>c^1=\delta P_\mathfrak{b}</math> for the simple reason that <math>P_\mathfrak{b}\notin\mathcal{W}\ .</math> Then
- <math> \delta^1 c^1(x,y)=\delta_1(x)c^1(y)-\delta_1(y)c^1(x)-c^1([x,y])\ :</math>
- <math>=\delta_1(x)[d^{(0)}(y),P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}-\delta^{(0)}(y)[d_1(x),P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}
- <math>=[d_1(x),[d_1(y),P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}]_{\mathrm{End}(\mathfrak{a})}
- <math>=<a href="d_1(x),d_1(y)]_{\mathrm{End}(\mathfrak{a})},P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})} -[d_1([x,y]),P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}\ :</math> :&lt;math&gt;=0&lt;/math&gt; Since &lt;math&gt;H^1(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\mathcal&#123;W&#125;)=0\ ,&lt;/math&gt; one has &lt;math&gt;c^1=\delta c^0\ .&lt;/math&gt; Then, with &lt;math&gt;\mathcal&#123;P&#125;_\mathfrak&#123;b&#125;=P_\mathfrak&#123;b&#125;&#45;c^0\ ,&lt;/math&gt; :&lt;math&gt;&#91;d_1(x),\mathcal&#123;P&#125;_\mathfrak&#123;b&#125;&#93;=c^1(x)&#45;\delta_1(x)c^0=c^1(x)&#45;\delta c^0(x)=0&lt;/math&gt; One has &lt;math&gt; \mathcal&#123;P&#125;_\mathfrak&#123;b&#125;a\in \mathfrak&#123;b&#125;&lt;/math&gt; for &lt;math&gt;a\in\mathfrak&#123;a&#125;&lt;/math&gt; and &lt;math&gt;\mathcal&#123;P&#125;_\mathfrak&#123;b&#125;b=P_\mathfrak&#123;b&#125;b=b&lt;/math&gt; for &lt;math&gt;b\in\mathfrak&#123;b&#125;\ .&lt;/math&gt; The conclusion is that &lt;math&gt; \mathcal&#123;P&#125;_\mathfrak&#123;b&#125;&lt;/math&gt; is a projector on &lt;math&gt;\mathfrak&#123;b&#125;&lt;/math&gt; as a &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt;-module (and therefore &lt;math&gt;(1&#45;\mathcal&#123;P&#125;_\mathfrak&#123;b&#125;) &lt;/math&gt; is a projector on the complementary subspace). Since &lt;math&gt;\mathfrak&#123;a&#125;&lt;/math&gt; is finite-dimensional, the result can be proved using induction. === theorem === Suppose &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; and &lt;math&gt;\mathfrak&#123;a&#125;&lt;/math&gt; are finite dimensional. Suppose there exists a nondegenerate trace form &lt;math&gt;K_&#123;\tilde&#123;\mathfrak&#123;g&#125;&#125;'&#125;\ .&lt;/math&gt; If &lt;math&gt;&#91;\tilde&#123;\mathfrak&#123;g&#125;&#125;,\tilde&#123;\mathfrak&#123;g&#125;&#125;&#93;=\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; then any extension of &lt;math&gt;\tilde&#123;\mathfrak&#123;g&#125;&#125;&lt;/math&gt; by &lt;math&gt;\mathfrak&#123;a&#125;&lt;/math&gt; is trivial. === proof === This follows from the fact that &lt;math&gt;H^2(\tilde&#123;\mathfrak&#123;g&#125;&#125;,\mathfrak&#123;a&#125;)=0\ .&lt;/math&gt; === references === *<span id="MR0323842"></span>Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. xii+169 pp. On to the ninth lecture Back to the seventh lecture garbage">d_1(x),d_1(y)]_{\mathrm{End}(\mathfrak{a})},P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}
- <math>=0</math>
- <math>[d_1(x),\mathcal{P}_\mathfrak{b}]=c^1(x)-\delta_1(x)c^0=c^1(x)-\delta c^0(x)=0</math>
The conclusion is that <math> \mathcal{P}_\mathfrak{b}</math> is a projector on <math>\mathfrak{b}</math> as a <math>\tilde{\mathfrak{g}}</math>-module (and therefore <math>(1-\mathcal{P}_\mathfrak{b}) </math> is a projector on the complementary subspace).
Since <math>\mathfrak{a}</math> is finite-dimensional, the result can be proved using induction.
Suppose <math>\tilde{\mathfrak{g}}</math> and <math>\mathfrak{a}</math> are finite dimensional.
Suppose there exists a nondegenerate trace form <math>K_{\tilde{\mathfrak{g}}'}\ .</math>
If <math>[\tilde{\mathfrak{g}},\tilde{\mathfrak{g}}]=\tilde{\mathfrak{g}}</math> then any extension of <math>\tilde{\mathfrak{g}}</math> by <math>\mathfrak{a}</math> is trivial.
This follows from the fact that <math>H^2(\tilde{\mathfrak{g}},\mathfrak{a})=0\ .</math>
- <span id="MR0323842"></span>Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. xii+169 pp.
Back to the seventh lecture garbage</a>d_1(x),d_1(y)]_{\mathrm{End}(\mathfrak{a})},P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})} -[d_1([x,y]),P_\mathfrak{b}]_{\mathrm{End}(\mathfrak{a})}\ :</math>
- <math>=0</math>
- <math>[d_1(x),\mathcal{P}_\mathfrak{b}]=c^1(x)-\delta_1(x)c^0=c^1(x)-\delta c^0(x)=0</math>
The conclusion is that <math> \mathcal{P}_\mathfrak{b}</math> is a projector on <math>\mathfrak{b}</math> as a <math>\tilde{\mathfrak{g}}</math>-module (and therefore <math>(1-\mathcal{P}_\mathfrak{b}) </math> is a projector on the complementary subspace).
Since <math>\mathfrak{a}</math> is finite-dimensional, the result can be proved using induction.
Suppose <math>\tilde{\mathfrak{g}}</math> and <math>\mathfrak{a}</math> are finite dimensional.
Suppose there exists a nondegenerate trace form <math>K_{\tilde{\mathfrak{g}}'}\ .</math>
If <math>[\tilde{\mathfrak{g}},\tilde{\mathfrak{g}}]=\tilde{\mathfrak{g}}</math> then any extension of <math>\tilde{\mathfrak{g}}</math> by <math>\mathfrak{a}</math> is trivial.
This follows from the fact that <math>H^2(\tilde{\mathfrak{g}},\mathfrak{a})=0\ .</math>
- Humphreys, James E. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. xii+169 pp.