klad - davidar/scholarpedia GitHub Wiki
Let <math>r_p</math> be the map of <math>F^p C^\cdot(\mathfrak{g},\mathfrak{a})</math> to <math> C^\cdot(\mathfrak{h},C^p(\mathfrak{g}/\mathfrak{h},\mathfrak{a}))</math> given by restricting all but the last <math>p</math> arguments to <math>\mathfrak{h}\ .</math> Then
- <math> [r_p]: E_p^{0,n} \rightarrow C^{n-p}(\mathfrak{h},C^p(\mathfrak{g}/\mathfrak{h},\mathfrak{a})) </math>
Let <math>\alpha^4\in F^2C^4(\mathfrak{g},\mathfrak{a})\ .</math> Then
- <math> [r_2][\alpha^4](h_1,h_2)([g_1],[g_2])=\alpha^4(h_1,h_2,g_1,g_2)</math>
On the other hand, giving a form <math>\beta^2\in C^{2}(\mathfrak{h},C^2(\mathfrak{g}/\mathfrak{h},\mathfrak{a}) </math> one defines
- <math>\rho_2\beta^2(h_1,h_2,g_1,g_2)=\beta^2(h_1,h_2)([g_1],[g_2])</math>
One checks that <math>[r_2][\rho_2\beta^2]=\beta^2</math> and <math> \rho_2[r_2][\alpha^4]=\alpha^4\ .</math>
By definition, <math>E_p^{0}=F^pC^\cdot(\mathfrak{g},\mathfrak{a})/F^{p+1}C^\cdot(\mathfrak{g},\mathfrak{a}) </math> and <math> E_p^{0,n}</math> is the natural restriction to <math>n</math>-forms. The kernel of <math>r_p</math> is <math>F^{p+1}C^\cdot(\mathfrak{g},\mathfrak{a}) \ ,</math> which shows that <math>[r_p]</math> is injective. Given a section <math>\sigma:\mathfrak{g}/\mathfrak{h}\rightarrow \mathfrak{g}\ ,</math> one defines <math>\pi(x)=x-\sigma([x])</math> with <math>[\pi(x)]=0\ .</math> Let now for a given <math>\beta^{n-p}\in C^{n-p}(\mathfrak{h},C^p(\mathfrak{g}/\mathfrak{h},\mathfrak{a})) </math>
- <math> \rho_p\beta^{n-p}(g_1,\cdots,g_n)= \beta^{n-p}(\pi(g_1),\cdots,\pi(g_{n-p}))([g_{n-p+1}],\cdots,[g_n])</math>
- <math> [r_p] \delta_0^1=d_{\mathfrak{h}}^{n-p} [r_p] </math>
In the following one uses the fact that <math>a^n\in F^p C^n(\mathfrak{g},\mathfrak{a})</math> vanishes when it has <math>n-p+1</math> of its arguments in <math>\mathfrak{h}\ .</math>
- <math>[r_p]\delta_0^1 a^n(h_1,\cdots,h_{n-p+1})([g_{1}],\cdots,[g_p])=
- <math>=\sum_{i=1}^{n-p+1} (-1)^{i+1} d^{(0)}(h_i)a^n(h_1,\cdots,\hat{h}_i,\cdots,h_{n-p+1},g_1,\cdots,g_p)
- <math>-\sum_{i=1}^{n-p+1} \sum_{j=1}^{n-p+1}(-1)^{i+1} a^n(h_1,\cdots,\hat{h}_i,\cdots,[h_i,h_j],\cdots,h_{n-p+1},g_1,\cdots,g_p)\ :</math>
- <math>-\sum_{i=1}^{n-p+1}\sum_{j=1}^{p} (-1)^{i+1} a^n(h_1,\cdots,\hat{h}_i,\cdots,h_{n-p+1},g_1,\cdots,[h_i,g_j],\cdots,g_p)\ :</math>
- <math>-\sum_{i=1}^{p}\sum_{j=1}^{p} (-1)^{n-p+i} a^n(h_1,\cdots,h_{n-p+1},g_1,\cdots,\hat{g}_i,\cdots,[g_i,g_j],\cdots,g_p)\ :</math>
- <math>=\sum_{i=1}^{n-p+1} (-1)^{i+1} d^{(0)}(h_i)a^n(h_1,\cdots,\hat{h}_i,\cdots,h_{n-p+1},g_1,\cdots,g_p)\ :</math>
- <math>-\sum_{i=1}^{n-p+1} \sum_{j=1}^{n-p+1}(-1)^{i+1} a^n(h_1,\cdots,\hat{h}_i,\cdots,[h_i,h_j],\cdots,h_{n-p+1},g_1,\cdots,g_p)\ :</math>
- <math>=d_{\mathfrak{h}}^{n-p} [r_p]a^n (h_1,\cdots,h_{n-p+1})(g_1,\cdots,g_p)</math>
- <math> E_p^{1,n}=H^{n-p}(\mathfrak{h},C^p(\mathfrak{g}/\mathfrak{h},\mathfrak{a}))</math>
- <math>E_n^{1,n}=H^{0}(\mathfrak{h},C^n(\mathfrak{g}/\mathfrak{h},\mathfrak{a}))= C^n(\mathfrak{g}/\mathfrak{h},\mathfrak{a})^\mathfrak{h}</math>
- <math> E_p^{2,n}=H^{p}(\mathfrak{g}/\mathfrak{h},H^{n-p}(\mathfrak{h},\mathfrak{a}))</math>
One identifies in a natural way <math> C^{n-p}(\mathfrak{h},C^p(\mathfrak{g}/\mathfrak{h},\mathfrak{a}))</math> and <math> C^{p}(\mathfrak{g}/\mathfrak{h}, C^{n-p}(\mathfrak{h},\mathfrak{a}))\ .</math> This induces an identification of <math> H^{n-p}(\mathfrak{h},C^p(\mathfrak{g}/\mathfrak{h},\mathfrak{a}))</math> and <math> C^{p}(\mathfrak{g}/\mathfrak{h}, H^{n-p}(\mathfrak{h},\mathfrak{a}))\ .</math> Since
- <math>E_p^{2,n}=H^p(E_\cdot^{1,n},\delta_1^1)= H^{p}(\mathfrak{g}/\mathfrak{h},H^{n-p}(\mathfrak{h},\mathfrak{a}))</math>
Let <math>\mathfrak{h}</math> be an ideal of <math>\mathfrak{g}\ .</math> Then every element of <math>H^1(\mathfrak{h},\mathfrak{a})^\mathfrak{g}</math> has a representative cocycle which is the restriction to <math>\mathfrak{h}</math> of an element <math> f^1\in C^1(\mathfrak{g},\mathfrak{a})</math> such that <math>d^1 f^1\in F^2C^2(\mathfrak{g},\mathfrak{a})</math> and thus determines an element of <math>H^2(\mathfrak{g}/\mathfrak{h},\mathfrak{a}^\mathfrak{h})\ .</math> This element depends only on the given element of <math>H^1(\mathfrak{g},\mathfrak{a})^\mathfrak{h}\ .</math> If <math>\tau_2</math> is the resulting homomorphism of <math>H^1(\mathfrak{g},\mathfrak{a})^\mathfrak{h}</math> to <math>H^2(\mathfrak{g}/\mathfrak{h},\mathfrak{a}^\mathfrak{h})\ ,</math> the following sequence is exact:
- <math>0\rightarrow H^1(\mathfrak{g}/\mathfrak{h},\mathfrak{a}^\mathfrak{h})
This can be read as
- <math>0\rightarrow H^1(\mathfrak{g}/\mathfrak{h},H^0(\mathfrak{h},\mathfrak{a}))
- <math>0\rightarrow E_1^{2,1}
- <math>0=d^1f^1(h_1,h_2)= d^{(1)}(h_1)f^1(h_2) -d^{(0)}(h_2)f^1(h_1)\ :</math>
- <math>= -d^{(0)}(h_2)f^1(h_1)</math>
- <math>d^1\tilde{f}^1(x,y)= d^{(1)}(x)f^1(\pi(y)) -d^{(0)}(y)f^1(\pi(x))\ :</math>
- <math>=-d^{(0)}(y)f^1(\pi(x))</math>
- <math>d^1\tilde{f}^1(x,h)=0</math>
- <math>d^1\tilde{f}^1\in F^2 C_\wedge^2(\mathfrak{g},\mathfrak{a}) =C_\wedge^2(\mathfrak{g}/\mathfrak{h},\mathfrak{a})</math>
- <math> d^{(0)}(h)d^1\tilde{f}^1(x,y)=d^{(0)}(h)d^{(0)}(x)f^1(\pi(y))
- <math>=d^{(0)}(x)d^{(0)}(h)f^1(\pi(y))+d^{(0)}([h,x])f^1(\pi(y))
- <math>=0</math>
- <math>d^1\tilde{f}^1\in C_\wedge^2(\mathfrak{g}/\mathfrak{h},\mathfrak{a}^\mathfrak{h})</math>
- <math>d^1\tilde{f}^1\in H_\wedge^2(\mathfrak{g}/\mathfrak{h},\mathfrak{a}^\mathfrak{h})</math>
- <math>\tau_2([f^1])=[d^1\tilde{f}^1]</math>