Thick disks - davidar/scholarpedia GitHub Wiki

Thick discs: assumptions

For "thick discs" models of accretion discs one assumes that:
  • Matter distribution is stationary and axially symmetric, i.e. matter quantities such as density <math>\epsilon</math> or pressure <math>P</math> are independent on time <math>t</math> and the azimuthal angle <math>\phi\ .</math>
  • Matter moves on circular trajectories, i.e. the four velocity has the form <math>u^i = [u^t,]\ .</math> The angular velocity is defined as <math>\Omega = u^{\phi}/u^t\ ,</math> and the angular momentum as <math>\ell = - u_{\phi}/u_t\ ,</math>
  • <math></math>t_{dyn} \ll t_{the} <t_{vis}\> with &lt;math&gt;t_&#123;dyn&#125;&lt;/math&gt; being the dynamical timescale in which pressure force adjusts to the balance of gravitational and centrifugal forces, &lt;math&gt;t_&#123;the&#125;&lt;/math&gt; being the thermal timescale in which the entropy redistribution occurs due to dissipative heating and cooling processes, and &lt;math&gt;t_&#123;vis&#125;&lt;/math&gt; being the viscous timescale in which angular momentum distribution changes due to torque caused by dissipative stresses. Mathematically, this is equivalent to assume the stress energy tensor in the form, &lt;math&gt;T^i_&#123;~k&#125; = u^i\,u_k\,(P + \epsilon) &#45; \delta^i_&#123;~k&#125;\,P\ .&lt;/math&gt;&lt;/div&gt;

Thick discs: analytic solution in the barytropic case (Polish doughnuts)

<div align="justify">From the equilibrium condition &lt;math&gt;\nabla^k\,T^i_&#123;~k&#125; = 0&lt;/math&gt; one derives the von Zeipel condition that states that for barytropic fluids &lt;math&gt;\epsilon = \epsilon(P)\ ,&lt;/math&gt; the surfaces of constant angular velocity and of constant angular momentum coincide, i.e. &lt;math&gt;\ell = \ell(\Omega)\ .&lt;/math&gt; The functions &lt;math&gt;\epsilon = \epsilon(P)&lt;/math&gt; and &lt;math&gt;\ell = \ell(\Omega)&lt;/math&gt; are independent and may be separately assumed. When they are known, the analytic solution is given by,</div> <table><tr><td align="left" valign="middle">

&lt;math&gt;
W(P) \equiv \int \frac&#123;dP&#125;&#123;\epsilon(P) + P&#125; = \ln A + \int \frac&#123;d\Omega&#125;&#123;1 &#45; \Omega\,\ell(\Omega)&#125; \equiv F(r, \theta), ~~~&#123;\rm with&#125;~~~A = \left&#91;g_&#123;tt&#125;(r,\theta)&#93;^&#123;&#45;1/2&#125;. &lt;/math&gt; </td><td align="right" valign="middle">&lt;math&gt;(3.1.1)&lt;/math&gt;</td></tr></table>



&lt;/td&gt;&lt;/tr&gt;&lt;/table&gt;</t_{vis}\>


⚠️ **GitHub.com Fallback** ⚠️