More on General relativity - davidar/scholarpedia GitHub Wiki
Note: in this appendix, the convention of summation over lower and upper repeated indices is used.
Given an affine connection <math>\mathbf{\Gamma}_\mu</math> on a differential manifold <math>\mathcal{M}\ ,</math> the parallel transport of differentiable tensor fields can be locally defined with the use of covariant derivatives. For example, the form of the covariant derivative acting on a vector field <math>V^\lambda</math> is
- <math>(\mathrm{D}_\nu V)^\lambda:=\partial_\nu V^\lambda +\Gamma^\lambda_{\mu\nu}V^\mu.</math>
- <math> \mathbf{R}_{\mu\nu}:=[\mathrm{D}_\mu,\mathrm{D}_\nu]=\partial_\mu \mathbf{\Gamma}_\nu- \partial_\nu \mathbf{\Gamma}_\mu+[\mathbf{\Gamma}_\mu,\mathbf{\Gamma}_\nu],</math>
- <math> R_{\sigma\mu\nu}^\rho = \partial_\mu\Gamma^\rho_{\sigma\nu}- \partial_\nu\Gamma^\rho_{\sigma\mu}+\Gamma^\rho_{\tau\mu}\Gamma^\tau_{\sigma\nu}-\Gamma^\rho_{\tau\nu}\Gamma^\tau_{\sigma\mu}\,.</math>
- <math>R_{\mu\nu}:= R_{\mu\nu\rho}^\rho</math>
- <math> R:=g^{\mu\nu}R_{\mu\nu}</math>
- <math>\Gamma^\lambda_{\mu\nu}=\frac{1}{2}\,g^{\lambda\rho}\left(\partial_{\mu}\,g_{\rho\nu}+\partial_{\nu}\,g_{\mu\rho}-\partial_{\rho}\,g_{\mu\nu}\right) \,.</math>
In the absence of matter, the equations of the classical motion of General relativity for the metric tensor <math>\mathbf{g}\equiv\{g_{\mu\nu}(x)\}</math> read
- <math> R_{\mu\nu}({\mathbf g} (x) )-{1\over2}R({\mathbf g} (x))g_{\mu\nu}=0\,. </math>
- <math>\mathcal{S}({\mathbf g})=\int {\mathrm d}^4x\, (-g(x) )^{1/2} R