Hopf Hopf bifurcation - davidar/scholarpedia GitHub Wiki
The Hopf-Hopf bifurcation is a bifurcation of an equilibrium point in a two-parameter family of autonomous ODEs at which the critical equilibrium has two pairs of purely imaginary eigenvalues. This phenomenon is also called the double-Hopf bifurcation.
The bifurcation point in the parameter plane lies at a transversal intersection of two curves of Andronov-Hopf bifurcations. Generically, two branches of torus bifurcations emanate from the Hopf-Hopf (HH) point. Depending on the system, other bifurcations occur for nearby parameter values, including bifurcations of Shilnikov's homoclinic orbits to the focus-focus equilibrium, and bifurcations of a heteroclinic structure connecting saddle limit cycles and equilibria.
This bifurcation, therefore, can imply a local birth of "chaos". Also quasi-periodicity is involved (Braaksma and Broer, 1982).
Consider an autonomous system of ordinary differential equations (ODEs)
- <math>\label{ode1}
depending on two parameters <math>\alpha \in {\mathbb R}^2\ ,</math> where <math>f</math> is smooth.
- Suppose that at <math>\alpha=0</math> the system has an equilibrium <math>x=0\ .</math>
- Assume that its Jacobian matrix <math>A=f_x(0,0)</math> has two pairs of purely imaginary eigenvalues <math>\lambda_{1,2}=\pm i\omega_1(0), \lambda_{3,4}=\pm i\omega_2(0)</math> with <math>\omega_1(0) > \omega_2(0) > 0\ .</math>
- two Andronov-Hopf bifurcation curves intersect transversally at <math>\alpha=0\ ;</math>
- two torus bifurcation curves emanate from the point <math>\alpha=0\ .</math>
To describe the Hopf-Hopf bifurcation analytically, consider the system \eqref{ode1} with <math>n=4\ ,</math>
- <math>\label{ode2}
If the following nondegeneracy conditions hold:
- <math> k \omega_1(0) \neq l \omega_2(0)</math> for integer <math> k,l >0, k+l \leq 3\ ;</math>
- the map <math> \alpha \mapsto ({\rm Re}\ \lambda_1(\alpha), {\rm Re}\ \lambda_3(\alpha))\ ,</math> where <math> \lambda_{1,3}(\alpha) </math> are eigenvalues of the continuation of the critical equilibrium for small <math>\|\alpha\|</math> such that <math>\lambda_{1}(0)=i\omega_1(0), \lambda_3(0)=i\omega_2(0)\ ,</math> is regular at <math> \alpha=0 \ ,</math>
- <math>
- <math>
The normal form is particularly simple in polar coordinates <math>(r_k,\varphi_k), k=1,2\ ,</math> where it takes the form:
- <math>
- <math>
- <math>
- <math>
- <math>
In general, the bifurcation diagram of the normal form depends on the <math>O</math>-terms, although some of its features are determined by the truncated normal form:
- <math>
- <math>
- <math>
- <math>
- <math>\label{ode3}
satisfying some extra genericity conditions can be found in Guckenheimer and Holmes (1983, Sec. 7.5). Here two cases should be distinguished:
- <math>a_{11}(0)a_{22}(0) > 0</math> ("simple case", no periodic orbits in the amplitude system);
- <math>a_{11}(0)a_{22}(0) < 0</math> ("difficult case", periodic and heteroclinic orbits in the amplitude system are possible).
- <math>
In the <math>n</math>-dimensional case with <math>n \geq 4\ ,</math> the Jacobian matrix <math>A=f_x(0,0)</math> at the Hopf-Hopf bifurcation has
- two simple pairs of purely imaginary eigenvalues <math>\lambda_{1,2}=\pm i \omega_1(0),\ \lambda_{3,4}=\pm i\omega_2(0)\ ,</math> as well as
- <math>n_s</math> eigenvalues with <math>{\rm Re}\ \lambda_j < 0\ ,</math> and
- <math>n_u</math> eigenvalues with <math>{\rm Re}\ \lambda_j > 0\ ,</math> with <math>n_s+n_u+4=n\ .</math>
The cubic coefficients in the normal form can be computed for <math>n \geq 4</math> as follows (Kuznetsov, 1999).
Write the Taylor expansion of <math>f(x,0)</math> at <math>x=0</math> as
- <math>
- <math>
- <math>
Introduce two complex eigenvectors, <math>q_{1,2} \in {\mathbb C}^n\ ,</math>
- <math>
- <math>
Compute
- <math>
- <math>
- <math>h_{1010}=[i(\omega]^{-1}B({q_{1}},{q_{2}})
- <math>
- <math>
- <math>
- <math>
- <math>
- <math>
- <math>
The bifurcation software MATCONT computes these coefficients automatically.
To analyze bifurcations of 2D tori, one has to normalize the fourth- and fifth-order terms. The resulting normal form is not unique. If the following nondegeneracy conditions hold:
- (HH.0) <math> k \omega_1(0) \neq l \omega_2(0)</math> for integer <math> k,l >0, k+l \leq 5\ ;</math>
- (HH.1) <math>{\rm Re}\ G_{2100}(0) \neq 0\ ;</math>
- (HH.2) <math>{\rm Re}\ G_{1011}(0) \neq 0\ ;</math>
- (HH.3) <math>{\rm Re}\ H_{1110}(0) \neq 0\ ;</math>
- (HH.4) <math>{\rm Re}\ H_{0021}(0) \neq 0\ ;</math>
- (HH.5) the map <math> \alpha \mapsto ({\rm Re}\ \lambda_1(\alpha), {\rm Re}\ \lambda_3(\alpha))\ ,</math> where <math> \lambda_{1,3}(\alpha) </math> are eigenvalues of the continuation of the critical equilibrium for small <math>\|\alpha\|</math> such that <math>\lambda_{1}(0)=i\omega_1(0), \lambda_3(0)=i\omega_2(0)\ ,</math> is regular at <math> \alpha=0 \ ,</math>
- <math>
- <math>
- <math>
- <math>
In the polar coordinates <math>(r_k,\varphi_k), k=1,2\ ,</math> Gavrilov's normal form reads:
- <math>\label{ode4}
where
- <math>
The bifurcation diagram of this normal form also depends on the <math>O</math>-terms, but some of its important features are determined by the fifth-order amplitude system
- <math>\label{ode5}
Local bifurcation diagrams of this system satisfying some extra genericity conditions can be found in Kuznetsov (2004, Sec. 8.6.2). In \eqref{ode5}, the positive equilibrium exhibits the Andronov-Hopf bifurcation generating a limit cycle. This limit cycle corresponds to a 3D invariant torus in the truncated normal form \eqref{ode4}. Taking into account the <math>O</math>-terms leads to the destruction of this torus, while a complicated invariant set close to it appears.
Hopf-Hopf bifurcation occurs also in infinite-dimensional ODEs generated by PDEs and DDEs to which the Center Manifold Theorem applies.
- N.K. Gavrilov (1980) Bifurcations of an equilibrium with two pairs of pure imagianry roots. In: "Methods of Qualitative Theory of Differential Equations", Gorkii, pp. 17-30 [in].
- J. Guckenheimer and P. Holmes (1983) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer.
- B.L.J. Braaksma and H.W. Broer (1982) , Quasi-periodic flow near a codimension one singularity of a divergence free vector field in dimension four. In: Bifurcation, Théorie Ergodique et Applications (Dijon, 1981), Astérisque, 98-99, 74-142.
- H.W. Broer (1983), Quasi-periodicity in local bifurcation theory, Nieuw Arch. Wisk. 4(1), 1-32. Reprinted in: Bifurcation Theory, Mechanics and Physics (eds. C.P. Bruter, A. Aragnol, A. Lichnérowicz), Reidel, 177-208.
- H.W. Broer and G. Vegter (1984) Subordinate Shilnikov bifurcations near some singularities of vector fields having low codimensions. Ergodic Theory Dynamical Sysems 4, 509-525.
- H.W. Broer (2003), Coupled Hopf-bifurcations: Persistent examples of n-quasiperiodicity given by families of 3-jets. Astérisque 286, 223-229.
- Yu.A. Kuznetsov (1999) Numerical normalization thechniques for all codim 2 bifurcations of equilibria in ODEs, SIAM J. Numer. Anal. 36, 1104-1124.
- Yu.A. Kuznetsov (2004) Elements of Applied Bifurcation Theory. Springer, 3rd edition.
- Yuri A. Kuznetsov (2006) Andronov-Hopf bifurcation. Scholarpedia, 1(10):1858.
- John Guckenheimer (2007) Bifurcation. Scholarpedia, 2(6):1517.
- James Meiss (2007) Dynamical systems. Scholarpedia, 2(2):1629.
- Eugene M. Izhikevich (2007) Equilibrium. Scholarpedia, 2(10):2014.
- Willy Govaerts, Yuri A. Kuznetsov, Bart Sautois (2006) MATCONT. Scholarpedia, 1(9):1375.
- Yuri A. Kuznetsov and Robert J. Sacker (2008) Neimark-Sacker bifurcation. Scholarpedia, 3(5):1845.
- James Murdock (2006) Normal forms. Scholarpedia, 1(10):1902.
- Jeff Moehlis, Kresimir Josic, Eric T. Shea-Brown (2006) Periodic orbit. Scholarpedia, 1(7):1358.
- Anatoly M. Samoilenko (2007) Quasiperiodic oscillations. Scholarpedia, 2(5):1783.
- Yuri A. Kuznetsov (2006) Saddle-node bifurcation. Scholarpedia, 1(10):1859.
- Emmanuil E. Shnol (2007) Stability of equilibria. Scholarpedia, 2(3):2770.
Andronov-Hopf Bifurcation, Saddle-node Bifurcation, Saddle-node Bifurcation of Periodic Orbits, Bifurcations, Center Manifold Theorem, Dynamical Systems, Equilibria, MATCONT, Ordinary Differential Equations,
Category: Dynamical Systems Category:Bifurcations Category:Multiple_Curators