Examples of control systems modeled by linear PDE's - davidar/scholarpedia GitHub Wiki
We return to the transport equation presented in the Section Examples of control systems modeled by PDE's. Let <math>L>0\ .</math> The linear control system we study is
- <math>\label{eq1}
- <math>\label{eq2}
where, at time <math>t\ ,</math> the control is <math>u(t)\in \mathbb{R}</math> and the state is <math>y(t,\cdot):(0,L)\rightarrow \mathbb{R}\ .</math>
One can put this linear control system in the general framework detailed at this link in the following way. For the Hilbert space <math>H\ ,</math> we take <math>H:=L^2(0,L)\ .</math> For the operator <math>A: D(A)\rightarrow H</math> we take
- <math>
- <math>
- <math>
- <math>
- <math>
For the Hilbert space <math>U\ ,</math> we take <math>U:=\mathbb{R}\ .</math> The operator <math>B:\mathbb{R}\rightarrow D(A^*)'</math> is defined by
- <math>\label{eq3}
Note that <math>B^*:D(A^*)\rightarrow \mathbb{R}</math> is defined by
- <math>
- <math>\label{eqReg}
Let <math>z^0\in D(A^*)\ .</math> Let
- <math>
- <math>\label{eq4}
Let us prove this inequality for<math>C_T:=1\ .</math> We have
- <math>\label{eq5}
- <math>\label{eq6}
- <math>\label{eq7}
We multiply \eqref{eq5} by <math>z</math> and integrate on <math>[0,T]\times[0,L]\ .</math> Using \eqref{eq6}, \eqref{eq7} and integrations by parts, we get
- <math>\label{eq8}
which shows that \eqref{eq4} holds for<math>C_T:=1\ .</math>
In fact, as one can easily check, the solution to the following Cauchy problem
- <math>\label{eq9}
- <math>\label{eq10}
- <math>\label{eq11}
where <math>T>0\ ,</math> <math>y^0\in L^2(0,L)</math> and <math>u\in L^2(0,T)</math> are given data, is
- <math>\label{eq12}
- <math>\label{eq13}
For the controllability of the linear control system \eqref{eq1}-\eqref{eq2}, see at this link.
We return to the linear Korteweg-de Vries equation already mentioned at this link in the Section Examples of control systems modeled by PDE's. Let <math>L>0\ .</math> The linear control system we study is
- <math>\label{eq14}
- <math>\label{eq15}
where, at time <math>t\ ,</math> the control is <math>u(t)\in \mathbb{R}</math> and the state is <math>y(t,\cdot):(0,L)\rightarrow \mathbb{R}\ .</math>
One can put this linear control system in the general framework detailed at this link in the following way. For the Hilbert space <math>H\ ,</math> we take <math>H=L^2(0,L)\ .</math> For the operator <math>A: D(A)\rightarrow H\ ,</math> we take
- <math>
- <math>
- <math>
- <math>
- <math>
For the Hilbert space <math>U\ ,</math> we take <math>U:=\mathbb{R}\ .</math> The operator <math>B:\mathbb{R}\rightarrow D(A^*)'</math> is defined by
- <math>\label{eq16}
Note that <math>B^*:D(A^*)\rightarrow \mathbb{R}</math> is defined by
- <math>
- <math></math>
- <math>\label{eq17}
The regularity property \eqref{eqReg} is equivalent to
- <math>\label{eq18}
From \eqref{eq17}, one has
- <math>\label{eq19}
- <math></math>\label{eq20}
- <math>\label{eq21}
\eqref{eq21} and simple integrations by parts one gets
- <math>\label{eq22}
which shows that \eqref{eq18} holds with <math>C_T:=1\ .</math> For the controllability of the linear control system \eqref{eq14}-\eqref{eq15}, see at this link.
We return to the linear heat equation already considered at this link in the Section Examples of control systems modeled by PDE's. Let <math>\Omega</math> be a non empty open subset of <math>\mathbb{R}^l</math> and let <math>\omega</math> be a non empty open subset of <math>\Omega\ .</math> The linear heat equation considered in this section is
- <math>\label{eq23}
- <math>\label{eq24}
where, at time <math>t \in [0,T]\ ,</math> the state is <math>y(t,\cdot) \in L^2(\Omega)</math> and the control is <math>u(t,\cdot) \in L^2 (\Omega)\ .</math> We require that
- <math>\label{eq25}
One can put this linear control system in the general framework detailed at this link in the following way. One chooses
- <math>
- <math>
- <math>
- <math>\label{eq26}
However, without any regularity assumption on <math>\Omega\ ,</math> \eqref{eq26} is wrong in general (see in particular Theorem 2.4.3, page 57, in (Pierre Grisvard,1992)). One easily checks that
- <math>\label{eq27}
- <math>\label{eq28}
Moreover,
- <math>\label{eq29}
Let <math>A^*</math> be the adjoint of<math>A\ .</math> One easily checks that
- <math>\label{eq30}
From the Lumer-Phillips theorem, \eqref{eq27}, \eqref{eq28}, \eqref{eq29} and \eqref{eq30}, <math>A</math> is the infinitesimal generator of a strongly continuous semigroup of linear contractions <math>S(t)\ ,</math> <math>t\in [0,+\infty)\],</math> on <math>H\ .</math> For the Hilbert space <math>U</math> we take <math>L^2(\omega)\ .</math> The linear map <math>B\in \mathcal{L}(U;D(A^*)')</math> is the map which is defined by
- <math>