Calogero Moser system - davidar/scholarpedia GitHub Wiki

Calogero-Moser dynamical system is a one-dimensional many-body problem that can be explicitly solved.

Table of Contents

The CM system

The dynamical system that is generally called Calogero-Moser (hereafter CM) is the model characterized by the Hamiltonian

<math>\label{Ham}
H\left( \underline{p},\underline{q}\right) =\frac{1}{2}\sum_{n=1}^{N}\left(p_{n}^{2}+\omega ^{2}q_{n}^{2}\right) +g^{2}\sum_{m,n=1;m\neq n}^{N}\left(q_{n}-q_{m}\right) ^{-2}~. </math>

Here and hereafter <math>N</math> is an arbitrary positive integer, the two (real) <math>N</math>-vectors <math>\underline{p}\equiv \left( p_{1},...,p_{N}\right) </math> [respectively]<math>\underline{q}\equiv \left( q_{1},...,q_{N}\right)] </math> feature as their components the <math>N</math> canonical momenta <math>p_{n}</math> [respectively], <math>g^{2}</math> is a positive "coupling constant" characterizing the strength of the interparticle two-body interaction and <math>\omega^{2}</math> is a nonnegative constant characterizing the strength of the interaction with an external "harmonic oscillator" potential. This Hamiltonian describes the (nonrelativistic) one-dimensional <math>N</math>-body problem of <math>N</math> equal particles (whose mass has been set to unity) interacting pairwise via a repulsive force singular at zero separation and with a common, confining, external "harmonic oscillator" potential (absent if <math>\omega =0</math>). An analogous model is characterized by the Hamiltonian

<math>\label{Ham2}
H\left( \underline{p},\underline{q}\right) =\frac{1}{2}\sum_{n=1}^{N}p_{n}^{2}+\sum_{m,n=1;m\neq n}^{N}\left[\frac{\omega] ~. </math>

It has the merit – in contrast to \eqref{Ham} – of being translation-invariant, and yet to yield, in its center-of-mass system, an almost identical dynamics to that yielded by the Hamiltonian \eqref{Ham}: the difference among the two models is that the center-of-mass oscillates harmonically in the first case, \eqref{Ham}, while it moves freely in the second case, \eqref{Ham2}.

In the classical context the Newtonian equations of motion yielded by \eqref{Ham} read

<math>\label{Newt}
\ddot{q}_{n}+\omega ^{2}q_{n}=2g^{2}\sum_{m=1;m\neq n}^{N}\left( q_{n}-q_{m}\right) ^{-3}~, </math>

where of course <math>q_{n}\equiv q_{n}\left( t\right) \ ,</math> the (real) independent variable <math>t</math> is the time and superimposed dots denote time differentiations.

In the quantal context the stationary Schrödinger equation corresponding to the Hamiltonian \eqref{Ham} reads

<math>\label{Schr}
\left[-\frac{1}{2}\Delta] \Psi =E\Psi ~, </math>

where <math>\Delta </math> is the Laplace operator in the <math>N</math>-dimensional space spanned by the <math>N</math> coordinates <math>x_{n}\ ,</math> <math>\Delta =\sum_{n=1}^{N}\partial^{2}/\partial x_{n}^{2}\ ,</math> and <math>\Psi \equiv \Psi \left(x_{1},...,x_{N}\right) </math> is the eigenfunction corresponding to the energy eigenvalue <math>E\ ;</math> note that we set to unity the Planck constant, <math>\hbar =1\ .</math>

The interest of this model lies in its exact solvability, both in the classical and quantal contexts.

In the classical context, the Hamiltonian model \eqref{Ham} is completely integrable – <math>N</math> integrals of motion in involution can be explicitly exhibited – indeed superintegrable – <math>2N-1</math> functionally independent integrals of motion can be explicitly exhibited – and algebraically solvable: the solution of the initial-value problem of the Newtonian equations of motion \eqref{Newt} can be performed by algebraic operations, specifically by computing the <math>N</math> eigenvalues of an <math>N\times N</math> matrix explicitly known in terms of the initial data <math>q_{n}\left( 0\right) \ ,</math> <math>\dot{q}_{n}\left( 0\right) </math> and of the time <math>t\ .</math> In the confined case (<math>\omega >0</math>), the solution is isochronous: completely periodic,

<math>
q_{n}\left( t+T\right) =q_{n}(t)~,~~~n=1,...,N~, </math> for arbitrary initial data, with the fixed period
<math>\label{T}
T=\frac{2\pi }{\omega }~. </math>

In the not confined case (<math>\omega =0</math>) the time evolution of the <math>N</math> particles features the following neat asymptotic relation among their positions and velocities <math>p_{n}=\dot{q}_{n}\ ,</math> in the remote past and future:

<math>\label{Asy}
q_{n}\left( t\right) =p_{n}^{\left( \pm \right) }\,t+q_{n}^{\left( \pm \right) }+O\left( t^{-1}\right) ~~~\text{as}~~~t\rightarrow \pm \infty ~, </math>
<math>
p_{n}^{\left( +\right) }=p_{N+1-n}^{\left( -\right) }~,~~~n=1,...,N~, </math>
<math>\label{Asyc}
q_{n}^{\left( +\right) }=q_{N+1-n}^{\left( -\right) }~,~~~n=1,...,N~, </math>

with the ordering of these velocities corresponding of course to the ordering of the particles on the line, say <math>p_{1}^{\left( -\right)}>p_{2}^{\left( -\right) }>...>p_{N}^{\left( -\right) }</math> and <math></math>p_{1}^{\left( +\right) }<p_{2}^{\left(

&amp;lt;math&amp;gt;\label&amp;#123;Spectrum&amp;#125;
E_&amp;#123;k&amp;#125;="&amp;quot;\omega&amp;quot;" ~~~~,~k="&amp;quot;0,1,2,...~,&amp;quot;" &amp;lt;/math&amp;gt;
&amp;lt;math&amp;gt;
a="&amp;quot;\frac&amp;amp;amp;#123;1&amp;amp;amp;#125;&amp;amp;amp;#123;2&amp;amp;amp;#125;\left(&amp;quot;" (&amp;lt;math&amp;gt;g^&amp;#123;2&amp;#125;="&amp;quot;0&amp;amp;amp;lt;/math&amp;amp;amp;gt;)&amp;quot;" &amp;lt;math&amp;gt;g^&amp;#123;2&amp;#125;="&amp;quot;0&amp;amp;amp;lt;/math&amp;amp;amp;gt;&amp;quot;" &amp;lt;math&amp;gt;a="&amp;quot;&amp;amp;amp;#45;1/2&amp;amp;amp;lt;/math&amp;amp;amp;gt;&amp;quot;" ="&amp;quot;1&amp;amp;amp;#125;^&amp;amp;amp;#123;N&amp;amp;amp;#125;\left(&amp;amp;#10;p_&amp;amp;amp;#123;n&amp;amp;amp;#125;^&amp;amp;amp;#123;2&amp;amp;amp;#125;+\omega&amp;quot;" &amp;amp;lt;math&amp;amp;gt;\sum_&amp;amp;#123;j="&amp;quot;1&amp;amp;amp;amp;#125;^&amp;amp;amp;amp;#123;N&amp;amp;amp;amp;#125;jn_&amp;amp;amp;amp;#123;j&amp;amp;amp;amp;#125;\&amp;quot;" &amp;amp;#125;="&amp;quot;q_&amp;amp;amp;amp;#123;N+1&amp;amp;amp;amp;#45;n&amp;amp;amp;amp;#125;^&amp;amp;amp;amp;#123;\left(&amp;quot;" (&amp;amp;lt;math&amp;amp;gt;\omega^&amp;amp;#123;2&amp;amp;#125;="&amp;quot;0&amp;amp;amp;amp;lt;/math&amp;amp;amp;amp;gt;)&amp;quot;" arietta...).

="&amp;quot;Additional&amp;quot;" results="&amp;quot;&amp;amp;#10;&amp;amp;#10;&amp;amp;#10;There&amp;quot;" ^&amp;amp;#123;&amp;amp;#45;2&amp;amp;#125;="&amp;quot;&amp;quot;" \sum_&amp;amp;#123;n="&amp;quot;1;m\neq&amp;quot;" &amp;amp;lt;math&amp;amp;gt;i^&amp;amp;#123;2&amp;amp;#125;="&amp;quot;&amp;amp;amp;amp;#45;1&amp;amp;amp;amp;lt;/math&amp;amp;amp;amp;gt;)&amp;quot;" &amp;amp;lt;math&amp;amp;gt;a="&amp;quot;0&amp;amp;amp;amp;lt;/math&amp;amp;amp;amp;gt;&amp;quot;" &amp;amp;lt;math&amp;amp;gt;z="&amp;quot;0\&amp;quot;" _&amp;amp;#123;1&amp;amp;#125;="&amp;quot;\infty&amp;quot;" _&amp;amp;#123;2&amp;amp;#125;="&amp;quot;i\pi&amp;quot;" &amp;amp;#125;+\sum_&amp;amp;#123;m="&amp;quot;1;m\neq&amp;quot;" &amp;amp;lt;math&amp;amp;gt;N="&amp;quot;2&amp;amp;amp;amp;lt;/math&amp;amp;amp;amp;gt;&amp;quot;" &amp;amp;lt;math&amp;amp;gt;q_&amp;amp;#123;n&amp;amp;#125;="&amp;quot;z_&amp;amp;amp;amp;#123;n&amp;amp;amp;amp;#125;&amp;amp;amp;amp;lt;/math&amp;amp;amp;amp;gt;&amp;quot;" +\sum_&amp;#123;m,n="&amp;quot;1;m\neq&amp;quot;" dynamics.

="&amp;quot;Historical&amp;quot;" notes="&amp;quot;&amp;amp;#10;&amp;amp;#10;&amp;amp;#10;The&amp;quot;" &amp;lt;math&amp;gt;N="&amp;quot;3&amp;amp;amp;lt;/math&amp;amp;amp;gt;&amp;amp;#10;this&amp;quot;&amp;gt;&amp;lt;/q_&amp;#123;2&amp;#125;\left(&amp;gt;Askold" entry.

="&#10;&#10;&#10;It" article.

="&#10;&#10;&#10;[BC1990]"></p_{2}^{\left(>II, Phys. Rev. A4 (1971), 2019-2021 (1971) & A5(1972), 1372-1376

[T1967] M. Toda: Vibration of a chain with a nonlinear interaction, J. Phys. Soc. Japan 22 (1967), 431-436

Internal references

  • James Meiss (2007) Dynamical systems. Scholarpedia, 2(2):1629.
  • James Meiss (2007) Hamiltonian systems. Scholarpedia, 2(8):1943.
  • Jeff Moehlis, Kresimir Josic, Eric T. Shea-Brown (2006) Periodic orbit. Scholarpedia, 1(7):1358.
  • Martin Gutzwiller (2007) Quantum chaos. Scholarpedia, 2(12):3146.
  • David H. Terman and Eugene M. Izhikevich (2008) State space. Scholarpedia, 3(3):1924.

Recommended Reading

  • Perelomov, A. M. 1990. Integrable systems of classical mechanics and Lie algebras. Birkhauser, Basel.
  • Hoppe, J. 1992. Lectures on Integrable Systems. Springer, Berlin.
  • Calogero, F. 2001. Classical many-body problems amenable to exact treatments, Lecture Notes in Physics Monograph m66. Springer, Berlin.
  • Babelon, O., Bernard D. and Talon M. 2003. Introduction to classical integrable systems. Cambridge University Press, Cambridge.
  • Etingof, P. 2007. Calogero-Moser Systems and Representation Theory. Zurich Lectures in Advanced Mathematics, European Mathematical Society Publishing House.
  • Calogero, F. 2008. Isochronous systems. Oxford University Press, Oxford.
Category:PhysicsCategory:Mathematical PhysicsCategory:Eponymous
⚠️ **GitHub.com Fallback** ⚠️