2.1. The black hole gravity - davidar/scholarpedia GitHub Wiki
The black hole gravitational field is described by three parameters: mass <math>M\ ,</math> angular momentum <math>J</math> and charge <math>Q\ .</math> It is convincingly argued that the astrophysical black holes relevant for accretion discs are uncharged, <math>Q = 0\ .</math> They are described by the stationary and axially symmetric Kerr geometry, with the metric <math>g_{\mu\nu}</math> given in the spherical Boyer-Lindquist coordinates <math>t, \phi, r, \theta</math> by the explicitly known functions of the radius <math>r</math> and the polar angle <math>\theta\ ,</math> which are listed in the table below. The table also gives the contravariant form of the metric, <math>g^{\mu\nu}\ ,</math> defined by <math>g^{\mu\beta}\,g_{\nu\beta} = \delta^{\mu}_{~\nu}\ .</math> It is defined, <math>\Delta = r^2 - 2Mr + a^2\ ,</math> <math>\Sigma = r^2 + a^2\cos^2\theta\ .</math> The signature <math>(+\,-\,-\,-)</math> is used.
The mass and angular momentum have been rescaled into the <math>c = G = 1</math> units, <math>M \rightarrow GM/c^2\ ,</math> <math>J \rightarrow a = J/c\ .</math> For a proper black hole solution it must be <math>\vert a \vert \le M\ ,</math> and the metric with <math>\vert a \vert > M</math> corresponds to a naked singularity. The Penrose cosmic censor hypothesis (unproved) states that there are no naked singularities in the Universe.
<table cellpadding="0" cellspacing="1" border="background: #999999"></table> <tr style="background: #ffffff;&amp;amp;#10;color: #000000"></tr> <td colspan="5" style="background:&amp;amp;amp;#10;#ffffff" valign="middle" align="center">
<math>g_{\mu\nu}</math>
<td width="540" colspan="4" style="middle" align="center"> <math>g^{\mu\nu}</math></td> </tr></td width="540"> <math>t</math> <td width="135" style="background: #ffffff" valign="center"> <math>\phi</math> </td></td width="135"> <math>r</math> <math>\theta</math> <td width="1" style="background: #999999" valign="center"></td></td width="1"> <math>t</math> <td width="135" style="background: #ffffff" valign="center"> <math>\phi</math> </td> <td valign="middle" align="center"> <math>r</math> </td> <td style="middle" align="center"> <math>\theta</math> </td> </tr></td width="135"> <math>t</math> <math>1 - 2\,M\,r/\Sigma</math> <math>4\,M\,a\,r\sin^2\theta/\Sigma</math> <math>0</math> <math>0</math>
<math>(r^2 + a^2)^2/\Sigma\,\Delta</math>
<math>- a^2\Delta\sin^2\theta/\Sigma\,\Delta</math> <math>2M\,\,a\,r/\Sigma\,\Delta</math> <math>0</math> <math>0</math> <math>\phi</math> <math>4\,M\,a\,r\sin^2\theta/\Sigma</math> <math>-(r^2 + a^2)\sin^2\theta</math>
<math>-2\,M\,a^2r\sin^4\theta/\Sigma</math> <math>0</math> <math>0</math>
<math>2M\,\,a\,r/\Sigma\,\Delta</math> <math>-\frac{\Delta-a^2\sin^2\theta}{\Delta\Sigma\sin^2\theta}</math> <math>0</math> <math>0</math> <math>r</math> <math>0</math> <math>0</math> <td width="135" style="background: #ffffff" valign="center"> <math>-\Sigma/\Delta</math> </td></td width="135"> <math>0</math>
<math>0</math> <math>0</math> <td width="135" style="background: #ffffff" valign="center"> <math>-\Delta/\Sigma</math> </td> <td valign="middle" align="center"> <math>0</math> </td> </tr></td width="135"> <math>\theta</math> <math>0</math> <math>0</math> <td width="135" style="background: #ffffff" valign="center"> <math>0</math> </td></td width="135"> <math>-\Sigma</math>
<td width="135" style="background: #ffffff" valign="center"> <math>0</math> </td></td width="135"> <math>0</math> <math>0</math> <td width="135" style="background: #ffffff" valign="center"> <math>-1/\Sigma</math> </td> </tr></table></td width="135"> In any stationary and axially symmetric spacetime, and in particular in the Kerr geometry, for matter rotating on circular orbits with four velocity <math>u^{\nu} = (u^t, u^{\phi})</math> it is <math>\Omega = u^{\phi}/u^t</math> and <math>j = - u_{\phi}/u_t\ ,</math> from which (and <math>u^{\nu}\,u_{\nu} = 1 </math>) it follows that,
- <math> \Omega = -\frac{j\,g_{tt} + g_{t\phi}}{j\,g_{t\phi} + g_{\phi\phi}}, ~~~ j =-\frac{\Omega\,g_{\phi\phi} +
|
<math>(3.3)</math> |
> PREVIOUS SECTION 2. Basic physics of accretion discs | > FIRST SECTION Scholarpedia Accretion discs | > NEXT SECTION 3. Analytic models of accretion discs |